Name: \qquad

Score: \qquad /15

Worksheet 3 (Due Wed, May 14)

Math 1060Q - Summer 2014

Professor Hohn

Solve for x in each of the following equations. You must show all of your work to receive full credit!

1. Let $f(x)=x^{2}+x+\frac{1}{x}$.
(a) Find $f(5)$.
(b) What is $f(-2)$?
(c) Find $f\left(\frac{1}{a}\right)$. Simplify as much as possible.
2. Let $h(t)=3 t-t^{2}$.
(a) What is $h(x-5)$? Simplify your answer as much as possible.
(b) Evaluate and simplify $h\left(\frac{a}{b}-1\right)$.
3. Let $Q(z)=x+2 z$.
(a) What is the independent variable? (What is Q a function of?)
(b) Find $Q(3)$.
(c) Find $Q(a)$.
4. Explain whether it is possible for f to be a function.
(a) $f(2)=4$ and $f(8)=4$.
(b) $f(4)=2$ and $f(4)=8$.
5. Use the graph of f below to answer the following questions.

(a) Estimate $f(3)$.
(b) What is the domain of f ?
(c) What is the range of f ?
6. Let

$$
g(x)=\frac{x-1}{x+2} .
$$

(a) Find a number b such that $g(b)=3$.
(b) Simplify the expression $\frac{g(x)-g(3)}{x-3}$.
7. Let $f(t)$ be defined as

$$
f(t)= \begin{cases}2 t+9 & \text { if } t<0 \\ 3 t-10 & \text { if } t \geqslant 0\end{cases}
$$

(a) Evaluate $f(-3)$.
(b) Find two different values of t such that $f(t)=4$.
8. Give an example of a function whose domain equals the set of really numbers and whose range equals the set $\{-1,0,1\}$.

