Name:

Score: \qquad /15

Worksheet 8 (Due Fri, May 16)

Math 1060Q - Summer 2014

Professor Hohn

You must show all of your work to receive full credit!

1. Factor the following quadratic equations.
(a) $x^{2}-3 x-10$
(b) $x^{2}+5 x+4$
(c) $2 x^{2}-8 x-42$
2. Find all values of x that satisfy the equation $x^{2}-5 x+6<0$.
3. Find all values of x that satisfy the equation $x^{2}+1 \leqslant 2 x$.
4. Find all values of x that satisfy the equation $-2 x^{2}+8 x-24>0$.
5. Find all values of x that satisfy the equation $-x^{2}-x>-12$.
6. Let $f(x)=x^{2}+12 x-10$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
7. Let $f(x)=x^{2}-8 x+14$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
8. Let $f(x)=x^{2}+x-1$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
9. Let $f(x)=-x^{2}-100 x+100$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
10. Let $f(x)=x^{2}+7 x+\frac{1}{2}$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
11. Let $f(x)=3 x^{2}+3 x+7$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
12. Let $f(x)=-10 x^{2}+100 x-1000$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
13. Let $f(x)=3 x^{2}+4 x+5$.
(a) Write $f(x)$ in the form $a(x-h)^{2}+k$.
(b) Find the value of x where $f(x)$ attains its minimum or maximum value.
14. Suppose f is the function whose domain is the interval $[1, \infty)$ with

$$
f(x)=x^{2}+4 x+5 .
$$

Find a formula for f^{-1}. What is the range of f ? What is the range of f^{-1} ?
15. Suppose g is the function whose domain is the interval $\left[\frac{3}{2}, \infty\right)$ with

$$
g(x)=x^{2}-3 x+9 .
$$

Find a formula for g^{-1}. What is the range of g ? What is the range of g^{-1} ?
16. The height h in feet of a model rocket above the ground t seconds after lift-off is given by $h(t)=-5 t^{2}+100 t$, for $0 \leqslant t \leqslant 20$. When does the rocket reach its maximum height above the ground? What is its maximum height?

