\qquad

Name:

Worksheet 3 - Section $14.1,14.3,14.4$ (Due Tues, Sept 30) Math 2110Q - Fall 2014
 Professor Hohn

You must show all of your work to receive full credit!

1. Sketch both a contour map and the graph of the function

$$
f(x, y)=x^{2}+9 y^{2} .
$$

Pick at least $5 k$ values for your contour map.
2. The temperature at a point (x, y) on a flat metal plate is given by $T(x, y)=60 /\left(1+x^{2}+y^{2}\right)$, where t is measured in ${ }^{\circ} \mathrm{C}$ and x, y in meters. Find the rate of change of temperature with respect to distance at the point $(2,1)$ in (a) the x-direction and (b) the y-direction.
3. Let $z=\ln \left(e^{x}+e^{y}\right)$.
(a) Verify that the function is a solution of the differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1
$$

(b) Verify that the function is a solution of the differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0
$$

4. Find an equation of the tangent plane to the surface $z=\ln (x-2 y)$ at the point $(3,1,0)$.
