\qquad

Name:

Worksheet 6 - Section 15.4, 15.7 (Due Tues, Nov. 4)

Math 2110Q - Fall 2014
Professor Hohn

You must show all of your work to receive full credit!

1. Use a double integral to find the area of the region inside the cardioid $r=1+\cos \theta$ and outside the circle $r=3 \cos \theta$.
2. Evaluate the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

by converting to polar coordinates.
3. We define the improper integral (over the entire plane \mathbb{R}^{2})

$$
\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A
$$

where D_{a} is the disk with radius a and center at the origin. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi .
$$

4. Evaluate the triple integral

$$
\iiint_{E} x y d V
$$

where E is bounded by the parabolic cylinders $y=x^{2}$ and $x=y^{2}$ and the planes $z=0$ and $z=x+y$.

