\qquad

Name:

Worksheet 7 - Section 15.8, 15.9 (Due Tues, Nov. 11)

Math 2110Q - Fall 2014

Professor Hohn

You must show all of your work to receive full credit!

1. Convert the following into an integral in cylindrical coordinates.

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z d z d x d y
$$

2. Convert the following into an integral in spherical coordinates.

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
$$

3. Let $\rho(x, y, z)$ be the density function of a solid object that occupies the region E (in units of mass per unit volume). At any given point (x, y, z), its mass is

$$
m=\iiint_{E} \rho(x, y, z) d V
$$

Find the mass of the solid E bounded by the parabolic cylinder $z=1-y^{2}$ and the planes $x+z=1, x=0$ and $z=0$ with density function $\rho(x, y, z)=4$.
4. A model for the density δ of the earth's atmosphere near its surface is

$$
\delta=619.09-0.000097 \rho
$$

where ρ (the distance from the center of the earth) is measured in meters and δ is measured in kilograms per cubic meter. If we take the surface of the earth to be a sphere with radius $6.370 \times 10^{6} \leq \rho \leq 6.375 \times 10^{6}$. Use this model to estimate the mass of the atmosphere between the ground and an altitude of 5 km .

