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Review Worksheet - Chapter 15 + Lagrange multipliers

Math 2110Q – Fall 2014

Professor Hohn

You must show all of your work to receive full credit!
Answer (in no particular order):
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1. Calculate the integral ∫ 1

0

∫ 1

0
yexy dx dy.
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2. Calculate the integral ∫ 1

0

∫ y

0

∫ 1

x
6xyz dz dx dy.
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3. Write
∫∫
R

f(x, y) dA as an iterated integral where R is the region described below.
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Check your answer by letting f(x, y) = 1.
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4. Set up an integral ∫∫
D

x dA

where D is the region in the first quadrant that lies between x2 + y2 = 1 and x2 + y2 = 2.
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5. Set up an integral ∫∫∫
E

z dV

where E is the region bounded by y = 0, z = 0, x+ y = 2 and y2 + z2 = 1 in the first octant.
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6. Set up an integral to find the volume of the solid bounded by x2 +y2 = 4, z = 0, and y+z = 3.
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7. Set up an integral to find the volume of the solid under the paraboloid z = x2 + 4y2 and about
the rectangle R = [0, 2]× [1, 4].
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8. Set up an integral to find the volume of the solid above the paraboloid z = x2 + y2 and below
the half cone z =

√
x2 + y2.
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9. Convert the following integral into an integral with spherical coordinates.∫ 2

−2

∫ √4−y2

0

∫ √4−x2−y2

−
√

4−x2−y2
y2
√
x2 + y2 + z2 dz dx dy
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10. Rewrite the integral ∫ 1

−1

∫ 1

x2

∫ 1−y

0
f(x, y, z) dz dy dx

as an iterated integral in the order dx dy dz. Check your answer by integrating using the
function f(x, y, z) = 1.
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11. Calculate the integral below by first reversing the order of integration.∫ 1

0

∫ 1

√
y

yex
2

x3
dx dy
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12. Use Lagrange multipliers to find the maximum and minimum values of f(x, y) =
1

x
+

1

y
, subject

to the constraint
1

x2
+

1

y2
= 1.
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13. Bonus: Use the transformation u = x− y, v = x+ y to evaluate∫∫
R

x− y
x+ y

dA

where R is the square with vertices (0, 2), (1, 1), (2, 2), and (1, 3).
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