\qquad ID: \qquad

WORKSHEET 6 - DUE 10/12

MATH 2110Q - Fall 2015

Professor Hohn

You must show all of your work for full credit. Please circle/box your answers or write a brief sentence indicating your answer.

1. Find the equation of the tangent plane to the surface at the given point.
(a) $z=3 y^{2}-2 x^{2}+x,(2,-1,-3)$
(b) $z=x \sin (x+y),(-1,1,0)$
2. The temperature at point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} C$ and x, y, z in meters.
(a) Find the rate of change of temperature at the point $P(2,-1,1)$ in the direction toward the point $Q(3,-3,3)$.
(b) In which direction does the temperature increase the fastest at P ?
(c) Find the maximum rate of increase at P.
3. Let $g(x, y)=x^{2}+y^{2}-4 x$.
(a) Find the gradient vector $\nabla g(1,2)$ and use it to find the tangent line to the level curve $g(x, y)=1$ at the point $(1,2)$.
(b) Sketch the level curve, the tangent line, and the gradient vector. Label each one clearly.
4. A function is called homogeneous of degree n if it satisfies the equation $f(t x, t y)=t^{n} f(x, y)$ for all t, where n is a positive integer and f has continuous second-order partial derivatives.
(a) Verify that $f(x, y)=x^{2} y+2 x y^{2}+5 y^{3}$ is homogeneous of degree 3 .
(b) Show that f satisfies the equation

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=3 f(x, y) .
$$

