\qquad
\qquad ID: \qquad

WORKSHEET 6 - DUE 10/12

MATH 2110Q - Fall 2015
Professor Hohn

You must show all of your work for full credit. Please circle/box your answers or write a brief sentence indicating your answer.

1. Find the equation of the tangent plane to the surface at the given point.
(a) $z=3 y^{2}-2 x^{2}+x,(2,-1,-3)$

Solution: The equation of a tangent plane to a surface is

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Thus, we need to find $f_{x}(x, y)$ and $f_{y}(x, y)$.

$$
\begin{gathered}
f_{x}(x, y)=-4 x+1 \Longrightarrow f_{x}(2,-1)=-4(2)+1=-7 \\
f_{y}(x, y)=6 y \Longrightarrow f_{y}(2,-1)=6(-1)=-6
\end{gathered}
$$

Then, the equation of a tangent plane to our surface is

$$
z=-3-7(x-2)-6(y+1) .
$$

(b) $z=x \sin (x+y),(-1,1,0)$

Solution: The equation of a tangent plane to a surface is

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Thus, we need to find $f_{x}(x, y)$ and $f_{y}(x, y)$.

$$
\begin{gathered}
f_{x}(x, y)=x \cos (x+y)+\sin (x+y) \Longrightarrow f_{x}(-1,1)=-1 \cos (0)+\sin (0)=-1 \\
f_{y}(x, y)=x \cos x+y \Longrightarrow f_{y}(-1,1)=-1 \cos (0)=-1
\end{gathered}
$$

Then, the equation of a tangent plane to our surface is

$$
z=0-(x+1)-(y-1)
$$

2. The temperature at point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} C$ and x, y, z in meters.
(a) Find the rate of change of temperature at the point $P(2,-1,1)$ in the direction toward the point $Q(3,-3,3)$.

Solution: We want to find the directional derivative of T in the direction $\overrightarrow{P Q}$.
Let $\hat{u}=\frac{\overrightarrow{P Q}}{\|P Q\|}$. Then, we want

$$
D_{\hat{u}} T(2,-1,1)=\nabla T(2,-1,1) \cdot \hat{u} .
$$

So,

$$
\nabla T(x, y, z)=\left\langle-2 x \cdot 200 e^{-x^{2}-3 y^{2}-9 z^{2}},-6 y \cdot 200 e^{-x^{2}-3 y^{2}-9 z^{2}},-18 z \cdot 200 e^{-x^{2}-3 y^{2}-9 z^{2}}\right\rangle
$$

At the point $(2,-1,1)$,

$$
\nabla T(2,-1,1)=\left\langle-800 e^{-16}, 1200 e^{-16},-1800 e^{-16}\right\rangle
$$

Now, we need to calculate \hat{u}.

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 3-2,-3-(-1), 3-1\rangle \\
& =\langle 1,-2,2\rangle
\end{aligned}
$$

Then,

$$
\begin{aligned}
\hat{u} & =\frac{\langle 1,-2,2\rangle}{\sqrt{1^{2}+(-2)^{2}+2^{2}}} \\
& =\langle 1 / 3,-2 / 3,2 / 3\rangle
\end{aligned}
$$

Then,

$$
\begin{aligned}
\nabla T(2,-1,-1) \cdot \hat{u} & =\left\langle-800 e^{-16}, 1200 e^{-16},-1800 e^{-16}\right\rangle \cdot\langle 1 / 3,-2 / 3,2 / 3\rangle \\
& =\frac{-800 e^{-16}}{3}+\frac{-2400 e^{-16}}{3}+\frac{-3600 e^{-16}}{3} \\
& =\frac{-6800 e^{-16}}{3}
\end{aligned}
$$

(b) In which direction does the temperature increase the fastest at P ?

Solution: Recall that the greatest rate of change occurs in the direction of the gradient at the P we are looking at. Hence,

$$
\nabla T(2,-1,1)=\left\langle-800 e^{-16}, 1200 e^{-16},-1800 e^{-16}\right\rangle
$$

(c) Find the maximum rate of increase at P.

Solution: Recall that the maximum rate of increase is the magnitude of the gradient vector at our point. Hence,

$$
\begin{aligned}
\|\nabla T(2,-1,1)\| & =\left\|\left\langle-800 e^{-16}, 1200 e^{-16},-1800 e^{-16}\right\rangle\right\| \\
& =\left|200 e^{-16}\right|\|\langle 4,6,9\rangle\| \\
& =200 e^{-16} \sqrt{4^{2}+6^{2}+9^{2}} \\
& =200 e^{-16} \sqrt{16+36+81} \\
& =200 e^{-16} \sqrt{133}
\end{aligned}
$$

3. Let $g(x, y)=x^{2}+y^{2}-4 x$.
(a) Find the gradient vector $\nabla g(1,2)$ and use it to find the tangent line to the level curve $g(x, y)=1$ at the point $(1,2)$.

Solution: First, let's find the $\nabla g(1,2)$:

$$
\nabla g(x, y)=\langle 2 x-4,2 y\rangle \Longrightarrow \nabla g(1,2)=\langle-2,4\rangle .
$$

The tangent line to the level curve at $(1,2)$ is

$$
z=1-2(x-1)+4(y-2)
$$

(b) Sketch the level curve, the tangent line, and the gradient vector. Label each one clearly.
4. A function is called homogeneous of degree n if it satisfies the equation $f(t x, t y)=t^{n} f(x, y)$ for all t, where n is a positive integer and f has continuous second-order partial derivatives.
(a) Verify that $f(x, y)=x^{2} y+2 x y^{2}+5 y^{3}$ is homogeneous of degree 3 .

Solution: We need to show that $f(t x, t y)=t^{3} f(x, y)$.

$$
\begin{aligned}
f(t x, t y) & =(t x)^{2}(t y)+2(t x)(t y)^{2}+5(t y)^{3} \\
& =t^{2} x^{2} t y+2 t x t^{2} y^{2}+5 t^{3} y^{3} \\
& =t^{3} x^{2} y+2 t^{3} x y^{2}+5 t^{3} y^{3} \\
& =t^{3}\left(x^{2} y+2 x y^{2}+5 y^{3}\right) \\
& =t^{3} f(x, y)
\end{aligned}
$$

Thus, f is homogeneous of degree 3 .
(b) Show that f satisfies the equation

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=3 f(x, y)
$$

Solution: We will start with the left hand side and show that it is equal to the right hand side. Notice that we'll need to find f_{x} and f_{y}. First, f_{x} :

$$
f_{x}(x, y)=2 x y+2 y^{2}
$$

Then, f_{y} :

$$
f_{y}(x, y)=x^{2}+4 x y+15 y^{2}
$$

Now, on the left hand side we have

$$
\begin{aligned}
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y} & =x\left(2 x y+2 y^{2}\right)+y\left(x^{2}+4 x y+15 y^{2}\right) \\
& =2 x^{2} y+2 x y^{2}+x^{2} y+4 x y^{2}+15 y^{3} \\
& =3 x^{2} y+6 x y^{2}+15 y^{3} \\
& =3\left(x^{2} y+2 x y^{2}+5 y^{3}\right) \\
& =3 f(x, y)
\end{aligned}
$$

Thus, f satisfies the equation

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=3 f(x, y)
$$

