\qquad
\qquad ID: \qquad

Worksheet 1 - Due $9 / 9$
 MATH 2110Q - Fall 2015
 Professor Hohn

You must show all of your work to receive full credit!

1. Find a vector \vec{a} with representation given by the directed line segment $\overrightarrow{A B}$ where $A(0,3,1)$ and $B(2,3,-1)$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.

Solution: Let \vec{v} be the vector with representation given by the directed line segment $\overrightarrow{A B}$ where $A(0,3,1)$ and $B(2,3,-1)$. Then,

$$
\vec{a}=\langle 2-0,3-3,-1-1\rangle=\langle 2,0,-2\rangle
$$

The drawing of $\overrightarrow{A B}$ is

The drawing of \vec{a} is

2. Let $\vec{a}=2 \hat{x}-4 \hat{y}+4 \hat{z}$ and $\vec{b}=2 \hat{y}-\hat{z}$. Compute
(a) $\vec{a}+\vec{b}$

Solution:

$$
\vec{a}+\vec{b}=\langle 2+0,-4+2,4-1\rangle=\langle 2,-2,3\rangle
$$

(b) $2 \vec{a}+3 \vec{b}$

Solution:

$$
\begin{aligned}
& 2 \vec{a}=\langle 4,-8,8\rangle \\
& 3 \vec{b}=\langle 0,6,-3\rangle
\end{aligned}
$$

Then,

$$
2 \vec{a}+3 \vec{b}=\langle 4+0,-8+6,8-3\rangle=\langle 4,-2,5\rangle
$$

(c) $\|\vec{a}\|$

Solution:

$$
\|\vec{a}\|=\sqrt{2^{2}+(-4)^{2}+4^{2}}=\sqrt{4+16+16}=\sqrt{36}=6
$$

(d) $\|\vec{a}-\vec{b}\|$

Solution:

$$
\vec{a}-\vec{b}=\langle 2-0,-4-2,4-(-1)\rangle=\langle 2,-6,5\rangle
$$

Then,

$$
\|\vec{a}-\vec{b}\|=\sqrt{2^{2}+(-6)^{2}+5^{2}}=\sqrt{4+36+25}=\sqrt{65}
$$

3. Let $\vec{v}=\langle-4,2,2\rangle$.
(a) Find the unit vector that has the same direction as \vec{v}.

Solution: Let \hat{u} be the unit vector in the same direction as \vec{v}. Then,

$$
\hat{u}=\frac{\vec{v}}{\|\vec{v}\|}
$$

We find $\|\vec{v}\|$:

$$
\|\vec{v}\|=\sqrt{(-4)^{2}+2^{2}+2^{2}}=\sqrt{16+4+4}=\sqrt{24}
$$

Then,

$$
\hat{u}=\left\langle\frac{-4}{\sqrt{24}}, \frac{2}{\sqrt{24}}, \frac{2}{\sqrt{24}}\right\rangle
$$

(b) Find the vector that has the same direction as \vec{v}, but has length 6 .

Solution: We know from part (a) that \hat{u} is a vector in the direction of \vec{v} of length 1 (since \vec{u} is a unit vector). Thus, we can find a vector \vec{w} that has the same direction as \vec{v} but with length 6 by multiplying \hat{u} by 6 . Then,

$$
\vec{w}=6 \hat{u}=\left\langle\frac{-24}{\sqrt{24}}, \frac{12}{\sqrt{24}}, \frac{12}{\sqrt{24}}\right\rangle
$$

4. Application Question

A quarterback throws a football with angle of elevation 40° and speed $60 \mathrm{ft} / \mathrm{s}$. Find the horizontal and vertical components of the velocity vector.

Solution: We know a couple things about the velocity vector $\vec{a}: 1$) the magnitude ($60 \mathrm{ft} / \mathrm{s}$), and 2) the angle (40°). Then, the velocity vector \vec{a} would look like:

$$
\vec{a}=\left\langle 60 \cos \left(40^{\circ}\right), 60 \sin \left(40^{\circ}\right)\right\rangle
$$

