\qquad
\qquad

WORKSHEET 2 - DUE 9/14

MATH 2110Q - Fall 2015

Professor Hohn

You must show all of your work to receive full credit!

1. Decide whether each of the following expressions make sense. If so, calculate the given expression. If not, explain why.
Let $\vec{a}=\hat{x}+\hat{y}-2 \hat{z}, \vec{b}=3 \hat{x}-2 \hat{y}+\hat{z}$, and $\vec{c}=\hat{y}-5 \hat{z}$.
(a) $\vec{a} \cdot \vec{b}$
(b) $\|\vec{b} \times \vec{c}\|$
(c) $\vec{a} \cdot(\vec{b} \cdot \vec{c})$
(d) $\vec{a} \times(\vec{b} \times \vec{c})$
2. Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
3. Let $\vec{a}=\langle 1,1,-1\rangle$ and $\vec{b}=\langle 2,4,6\rangle$
(a) Compute $\vec{c}=\vec{a} \times \vec{b}$.
(b) Show that \vec{c} is orthogonal to \vec{a}.
(c) Show that \vec{c} is orthogonal to \vec{b}.
4. Let $\vec{a}, \vec{b} \in V_{3}$. Show that

$$
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a} .
$$

Hint: Start by letting $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. Show that the right hand side of the equation and the left hand side are the same.

