\qquad
\qquad ID: \qquad

WORKSHEET 2 - DUE 9/14

MATH 2110Q - Fall 2015

Professor Hohn

You must show all of your work to receive full credit!

1. Decide whether each of the following expressions make sense. If so, calculate the given expression. If not, explain why.
Let $\vec{a}=\hat{x}+\hat{y}-2 \hat{z}, \vec{b}=3 \hat{x}-2 \hat{y}+\hat{z}$, and $\vec{c}=\hat{y}-5 \hat{z}$.
(a) $\vec{a} \cdot \vec{b}$

Solution:

$$
\vec{a} \cdot \vec{b}=1 \cdot 3+1 \cdot(-2)+(-2) \cdot 1=3-2-2=-1
$$

(b) $\|\vec{b} \times \vec{c}\|$

Solution: First, we will find $\vec{b} \times \vec{c}$.

$$
\begin{aligned}
\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
3 & -2 & 1 \\
0 & 1 & -5
\end{array}\right| & =\hat{x}(10-1)-\hat{y}(-15-0)+\hat{z}(3-0) \\
& =\langle 9,15,3\rangle
\end{aligned}
$$

Then,

$$
\|\vec{b} \times \vec{c}\|=\|\langle 9,15,3\rangle\|=\sqrt{9^{2}+15^{2}+3^{2}}=\sqrt{81+225+9}=\sqrt{315}
$$

(c) $\vec{a} \cdot(\vec{b} \cdot \vec{c})$

Solution: Notice that $\vec{b} \cdot \vec{c}$ is a scalar. To solve this expression, we would have to take the dot product of vector a with a scalar, which is impossible. Thus, the expression $\vec{a} \cdot(\vec{b} \cdot \vec{c})$ does not make sense.
(d) $\vec{a} \times(\vec{b} \times \vec{c})$

Solution: In part (b), we calculated $\vec{b} \times \vec{c}$. Thus, we need only to calculate the cross product of \vec{a} with that vector.

$$
\begin{aligned}
\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
1 & 1 & -2 \\
9 & 15 & 3
\end{array}\right| & =\hat{x}(3-(-30))-\hat{y}(3-(-18))+\hat{z}(15-9) \\
& =\langle 33,-21,6\rangle
\end{aligned}
$$

2. Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.

Solution: We know that two vectors are orthogonal when the dot product of the vectors is 0 . Let $\vec{a}=\langle 3,2, x\rangle$ and $\vec{b}=\langle 2 x, 4, x\rangle$. We are told that \vec{a} and \vec{b} are orthogonal. Thus,

$$
\begin{aligned}
\langle 3,2, x\rangle \cdot\langle 2 x, 4, x\rangle & =0 \\
3(2 x)+2 \cdot 4+x \cdot x & =0 \\
x^{2}+6 x+8= & 0 \\
(x+4)(x+2) & =0 \\
\Longrightarrow x=-4,-2 &
\end{aligned}
$$

Thus, the values of x such that vectors \vec{a} and \vec{b} are orthogonal are $x=-4,-2$.
3. Let $\vec{a}=\langle 1,1,-1\rangle$ and $\vec{b}=\langle 2,4,6\rangle$
(a) Compute $\vec{c}=\vec{a} \times \vec{b}$.

Solution:

$$
\begin{aligned}
\vec{c} & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
1 & 1 & -1 \\
2 & 4 & 6
\end{array}\right| \\
& =\hat{x}(6-(-4))-\hat{y}(6-(-2))+\hat{z}(4-2) \\
& =\langle 10,-8,2\rangle
\end{aligned}
$$

(b) Show that \vec{c} is orthogonal to \vec{a}.

Solution: We show that \vec{c} is orthogonal to \vec{a} by showing that $\vec{a} \cdot \vec{c}=0$.

$$
\vec{a} \cdot \vec{c}=\langle 1,1,-1\rangle \cdot\langle 10,-8,2\rangle=10-8-2=0
$$

(c) Show that \vec{c} is orthogonal to \vec{b}.

Solution: In a similar manner to part(b),

$$
\vec{b} \cdot \vec{c}=\langle 2,4,6\rangle \cdot\langle 10,-8,2\rangle=20-32+12=0
$$

4. Let $\vec{a}, \vec{b} \in V_{3}$. Show that

$$
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}
$$

Hint: Start by letting $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. Show that the right hand side of the equation and the left hand side are the same.

Solution: Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. First, let's compute the left hand side of our equation.

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\hat{x}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\hat{y}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\hat{z}\left(a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

On the right hand side, we have

$$
\begin{aligned}
-\vec{b} \times \vec{a} & =-\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right| \\
& =-\left(\hat{x}\left(a_{3} b_{2}-a_{2} b_{3}\right)-\hat{y}\left(a_{3} b_{1}-a_{1} b_{3}\right)+\hat{z}\left(a_{2} b_{1}-a_{1} b_{2}\right)\right) \\
& =\hat{x}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\hat{y}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\hat{z}\left(a_{1} b_{2}-a_{2} b_{1}\right) .
\end{aligned}
$$

Thus,

$$
\vec{a} \times \vec{b}=\hat{x}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\hat{y}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\hat{z}\left(a_{1} b_{2}-a_{2} b_{1}\right)=-\vec{b} \times \vec{a} .
$$

