\qquad ID: \qquad

WORKSHEET 9 - DUE 12/7

MATH 2110Q - Fall 2015
Professor Hohn

You must show all of your work for full credit. Please circle/box your answers or write a brief sentence indicating your answer.

1. Find the gradient vector field $\vec{F}=\nabla f$ of $f(x, y)=\sqrt{x^{2}+y^{2}}$, sketch the vector field, and draw two level curves with $k=1,2$.
2. Evaluate the line integral

$$
\int_{C} x \sin y d s
$$

where C is the line segment from $(0,3)$ to $(4,6)$.
3. Evaluate the line integral

$$
\int_{C} e^{x} d x
$$

where C its he arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$.
4. Suppose \vec{F} is the vector field defined by

$$
\vec{F}(x, y)=\left(y+2 x e^{y}\right) \hat{x}+\left(x+x^{2} e^{y}-2\right) \hat{y} .
$$

(a) Show that \vec{F} is a conservative vector field.
(b) Find a potential function f for \vec{F} such that $\nabla f=\vec{F}$.
(c) As in parts (a) and (b), suppose \vec{F} is the vector field defined by

$$
\vec{F}(x, y)=\left(y+2 x e^{y}\right) \hat{x}+\left(x+x^{2} e^{y}-2\right) \hat{y} .
$$

Evaluate

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where C is parametrized by $\vec{r}(t)=\langle\sqrt{t}, \ln t\rangle, 1 \leqslant t \leqslant 4$.

