\qquad

Score: \qquad /15

WORKSHEET 1 - CHAPTER 12 (DUE TUES, FEB 10)

Math 2110 Q - Spring 2015

Professor Hohn

You must show all of your work to receive full credit!
Answers (not necessarily in order):

$$
\begin{array}{r}
-1 / \sqrt{6},-2,-4,18,\langle 2,-1,5\rangle, x=-2+2 t, y=2-t, x+1=\frac{y+1}{3}=z-10, \\
z=4+5 t,-4 x+3 y+z=-14, \approx 417,\langle-196,3.92\rangle, x+3 y+z=6, \\
\langle 196,3.92\rangle(1,4,4), x+y+z=4,22 / \sqrt{26}, x=2+t, y=-t, z=4+2 t, \\
750,000 \sqrt{3},-1,3 \sqrt{35},\langle 33,-21,6\rangle,
\end{array}
$$

1. Calculate the given quantity if $\vec{a}=\hat{x}+\hat{y}-2 \hat{z}, \vec{b}=3 \hat{x}-2 \hat{y}+\hat{z}, \vec{c}=\hat{y}-5 \hat{z}$.
(a) $\vec{a} \cdot \vec{b}$
(b) $\|\vec{b} \times \vec{c}\|$
(c) $\vec{a} \cdot(\vec{b} \times \vec{c})$
(d) $\vec{a} \times(\vec{b} \times \vec{c})$
(e) $\operatorname{comp}_{\vec{a}} \vec{b}$
2. Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
3. Find parametric equations for the line through $(-2,2,4)$ and perpendicular to the plane $2 x-y+5 z=12$.
4. Find an equation of a plane though $(3,-1,1),(4,0,2)$, and $(6,3,1)$.
5. Find the point in which the line with parametric equations $x=2-t, y=1+3 t, z=4 t$ intersects the plane $2 x-y+z=2$.
6. Find an equation of the plane through the line of intersection of the planes $x-z=1$ and $y+2 z=3$ and perpendicular to the plane $x+y-2 z=1$.
7. Find the distance between the planes $3 x+y-4 z=2$ and $3 x+y-4 z=24$.
8. (a) Find an equation of the plane that passes through the points $A(2,1,1), B(-1,-1,10)$, and $C(1,3,-4)$.
(b) Find symmetric equations for the line through B that is perpendicular to the plane in part (a).
(c) A second planes passes through $(2,0,4)$ and has normal vector $\langle 2,-4,-3\rangle$. Show that the acute angle between the planes is approximately 43°.
(d) Find parametric equations for the line of intersection of the two planes.

Applications

9. A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1500 N. How much work is done by the truck in pulling the car 1 km ? (Watch your units)
10. A wrench 30 cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction $\langle 0,3,-4\rangle$ at the end of the wrench. Find the magnitude of the force needed to supply $100 \mathrm{~N} \cdot \mathrm{~m}$ of torque to the bolt. (Watch your units)
11. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm . Find the tension in each half of the clothesline. (Watch your units...also, gravity)

Bonus: Challenge Question

12. Suppose $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are vectors with $\left\|\overrightarrow{v_{1}}\right\|=2$ and $\left\|\overrightarrow{v_{2}}\right\|=3$, and $\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}=5$. Let $\overrightarrow{v_{3}}=\operatorname{proj}_{\overrightarrow{v_{1}}} \overrightarrow{v_{2}}$, $\overrightarrow{v_{4}}=\operatorname{proj}_{\overrightarrow{v_{2}}} \overrightarrow{v_{3}}, \overrightarrow{v_{5}}=\operatorname{proj}_{\overrightarrow{v_{3}}} \overrightarrow{v_{4}}$, and so on. Compute $\sum_{n=1}^{\infty}\left\|\overrightarrow{v_{n}}\right\|$.
