\qquad
\qquad

WORKSHEET 2 - CHAPTER 14 (DUE TUES, FEB 24)

Math 2110Q - Spring 2015

Professor Hohn

You must show all of your work to receive full credit!

1. Sketch both a contour map (graph of level curves) and the graph of the function

$$
f(x, y)=9 x^{2}+9 y^{2} .
$$

Pick at least three k values for your contour map (like $k=36,81,144$).

Solution: Here is an example of a contour map with $k=36,81,144$. When drawing these graphs be hand, please make the axes equally spaced.

2. The temperature at a point (x, y) on a flat metal plate is given by $T(x, y)=60 /\left(1+x^{2}+y^{2}\right)$, where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y in meters. Find the rate of change of temperature with respect to distance at the point $(2,1)$ in (a) the x-direction and (b) the y-direction.

Solution: To find the rate of change of temperature with respect to distance in the x direction, we need to find T_{x} at the point $(2,1)$.

$$
T_{x}=\frac{-60(2 x)}{\left(1+x^{2}+y^{2}\right)^{2}}=\frac{-120 x}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

Then,

$$
T_{x}(2,1)=\frac{-120(2)}{\left(1+2^{2}+1^{2}\right)^{2}}=\frac{-240}{36}=-20 / 3
$$

Similarly, to find the rate of change of temperature with respect to distance in the y-direction, we need to find T_{y} at the point $(2,1)$.

$$
T_{y}=\frac{-60(2 y)}{\left(1+x^{2}+y^{2}\right)^{2}}=\frac{-120 y}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

Then,

$$
T_{y}(2,1)=\frac{-120(1)}{\left(1+2^{2}+1^{2}\right)^{2}}=\frac{-120}{36}=-10 / 3
$$

3. Let $z=\ln \left(e^{x}+e^{y}\right)$. Verify that the function is a solution of the differential equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1
$$

Solution: To verify that the function is a solution to the differential equation, we first need to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
\frac{\partial z}{\partial x}=e^{x} /\left(e^{x}+e^{y}\right)
$$

and

$$
\frac{\partial z}{\partial y}=e^{y} /\left(e^{x}+e^{y}\right) .
$$

Now, we will show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$ by starting with the left-hand side of the equation and showing that it is equal to the right-hand side.

$$
\begin{aligned}
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} & =e^{x} /\left(e^{x}+e^{y}\right)+e^{y} /\left(e^{x}+e^{y}\right) \\
& =\left(e^{x}+e^{y}\right) /\left(e^{x}+e^{y}\right) \\
& =1
\end{aligned}
$$

Hence, the function satisfies the differential equation.
4. A visitor from planet Zorg tells you that there is a function f whose partial derivatives are $f_{x}(x, y)=x+4 y$ and $f_{y}(x, y)=3 x-y$. Should you believe the visitor? Why or why not?

Solution: There are a couple ways to approach this question.

Method 1: From our talk about Clairaut's Theorem, we know that $f_{x y}=f_{y x}$ for continuous functions $f_{x y}$ and $f_{y x}$. Therefore, if this isn't true for the equations given by the visitor, we can say that we don't believe our alien. $f_{x y}=4$ and $f y x=3$. Thus, $f_{x y} \neq f_{y x}$, and we can say that we don't believe our visitor.
Method 2: We can try to find our original function f by integrating f_{x} with respect to x and then taking a partial derivative with respect to y. We can check to see if our f_{y} matches our visitor's function f_{y}.

$$
\int f_{x} d x=\int(x+4 y) d x=\frac{x^{2}}{2}+4 x y+K(y)+C \Longrightarrow f(x, y)=\frac{x^{2}}{2}+4 x y+K(y)+C
$$

where K is a function of y. Note that this is because when we took a partial derivative any function of y acts like a constant. Now, we can look at our function f we created and take a derivative with respect to y.

$$
f_{y}=0+4 x+K^{\prime}(y) \Longrightarrow f_{y}=4 x+K^{\prime}(y) \neq 3 x-y
$$

Note that $4 x \neq 3 x$. Hence, no function f exists with the partial derivatives mentioned by the visitor.
5. Find $u_{x y}$ and $u_{y x}$ where $u=\ln (x+2 y)$.

Solution: Let's start by finding u_{x} and u_{y}.

$$
\begin{gathered}
u_{x}=\frac{1}{x+2 y}=(x+2 y)^{-1} \\
u_{y}=\frac{1}{x+2 y} \cdot 2=\frac{2}{x+2 y}=2(x+2 y)^{-1}
\end{gathered}
$$

Now, we will take do $\left(u_{x}\right)_{y}$.

$$
u_{x y}=-1(x+2 y)^{-2} \cdot 2=-2(x+2 y)^{-2}=\frac{-2}{(x+2 y)^{2}}
$$

Then,

$$
u_{y x}=-2(x+2 y)^{-2}=\frac{-2}{(x+2 y)^{2}}
$$

Notice that $u_{x y}=u_{y x}$.

