\qquad

Score: \qquad /15

WORKSHEET 3 - CHAPTER 14 (DUE TUES, MAR 3)

Math 2110Q - Spring 2015
Professor Hohn

You must show all of your work to receive full credit!

1. (a) Find an equation of the tangent plane to the surface $z=x e^{x y}$ at the point $(2,0,2)$.
(b) If $f(x, y)=\sqrt[3]{x^{3}+y^{3}}$, find $f_{x}(1,1)$.
2. If R is the total resistance of there resistors, connected in parallel, with resisitances R_{1}, R_{2}, R_{3}, then

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

If the resistances are measured in ohms as $R_{1}=25 \Omega, R_{2}=40 \Omega, R_{3}=50 \Omega$, with a possible error of 0.5% in each case, estimate the maximum error in the calculated value of R.
3. If $z=f(x, y)$, where $x=r \cos \theta$, and $y=r \sin \theta$, find (a) $\partial z / \partial r$
(b) $\partial z / \partial \theta$
4. Show that any function of the form

$$
z=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

[Hint: Let $u=x+a t$ and $v=x-a t$.]

