\qquad

Score: \qquad /15

WORKSHEET 3 - CHAPTER 14 (DUE TUES, MAR 3)

Math 2110Q - Spring 2015
Professor Hohn

You must show all of your work to receive full credit!

1. (a) Find an equation of the tangent plane to the surface $z=x e^{x y}$ at the point $(2,0,2)$.

Solution: The equation of a tangent plane to a surface at the point $\left(x_{0}, y_{0}\right)$ is given by

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+z_{0}=z .
$$

First, we find the partial derivative of $f(x, y)=x e^{x y}$ with respect to x.

$$
f_{x}(x, y)=1 \cdot e^{x y}+x \cdot y e^{x y}=e^{x y}+x y e^{x y}=(1+x y) e^{x y}
$$

Note that we needed to use the product rule. Now, we find the partial derivative of $f(x, y)=x e^{x y}$ with respect to y.

$$
f_{y}(x, y)=x \cdot x e^{x y}=x^{2} e^{x y}
$$

At the point $(2,0,2)$,

$$
f_{x}(2,0)=(1+2 \cdot 0) e^{2 \cdot 0}=1, \quad f_{y}(2,0)=2^{2} e^{2 \cdot 0}=4
$$

Then, our equation of the plane becomes

$$
(x-2)+4(y-0)+2=z
$$

(b) If $f(x, y)=\sqrt[3]{x^{3}+y^{3}}$, find $f_{x}(1,1)$.

Solution: We rewrite our equation to help us take a derivative: $f(x, y)=\left(x^{3}+y^{3}\right)^{1 / 3}$.

$$
f_{x}(x, y)=(1 / 3)\left(x^{3}+y^{3}\right)^{-2 / 3}\left(3 x^{2}\right) \Longrightarrow f_{x}(x, y)=x^{2}\left(x^{3}+y^{3}\right)^{-2 / 3}
$$

So, at the point $(1,1)$,

$$
f_{x}(1,1)=1^{2} \cdot\left(1^{3}+1^{3}\right)^{-2 / 3}=2^{-2 / 3}
$$

2. If R is the total resistance of there resistors, connected in parallel, with resisitances R_{1}, R_{2},
R_{3}, then

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

If the resistances are measured in ohms as $R_{1}=25 \Omega, R_{2}=40 \Omega, R_{3}=50 \Omega$, with a possible error of 0.5% in each case, estimate the maximum error in the calculated value of R.

Solution: First, let's do a change of variable to clarify what happening. Let $x=R_{1}, y=$ $R_{2}, z=R_{3}, w(x, y, z)=R\left(R_{1}, R_{2}, R_{3}\right)$. To find that maximum error, we will look at the differential of w.

$$
d w=w_{x} d x+w_{y} d y+w_{z} d z
$$

We need to find the partial derivatives of w at the point $(25,40,50)$, where

$$
\frac{1}{w}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z} .
$$

The partial derivative of w w.r.t. x is

$$
\frac{-1}{w^{2}} \cdot \frac{\partial w}{\partial x}=\frac{-1}{w^{2}} \Longrightarrow \frac{\partial w}{\partial x}=\frac{w^{2}}{x^{2}}=(w / x)^{2} .
$$

At the point $(25,40,50)$,

$$
w_{x}=\left(\frac{\frac{200}{17}}{25}\right)^{2}=(8 / 17)^{2}=64 / 289
$$

Now, we find the partial derivative of w w.r.t. y.

$$
\frac{-1}{w^{2}} \cdot \frac{\partial w}{\partial y}=\frac{-1}{w^{2}} \Longrightarrow \frac{\partial w}{\partial y}=\frac{w^{2}}{y^{2}}=(w / y)^{2} .
$$

At the point $(25,40,50)$,

$$
w_{y}=\left(\frac{\frac{200}{17}}{40}\right)^{2}=(5 / 17)^{2}=25 / 289
$$

The partial derivative of w w.r.t. z is

$$
\frac{-1}{w^{2}} \cdot \frac{\partial w}{\partial z}=\frac{-1}{w^{2}} \Longrightarrow \frac{\partial w}{\partial z}=\frac{w^{2}}{z^{2}}=(w / z)^{2}
$$

At the point $(25,40,50)$,

$$
w_{z}=\left(\frac{\frac{200}{17}}{50}\right)^{2}=(4 / 17)^{2}=16 / 289
$$

We also need to know $d x, d y, d z$. Recall that $x=25, y=40$ and $z=50$. We also know that the maximum error is 0.5% in x, y, z. Hence, $d x=25 \cdot 0.005=0.125, d y=40 \cdot 0.005=0.2$, and $d z=50 \cdot 0.005=0.25$.
Then,

$$
d w=(64 / 289) \cdot 0.125+(25 / 289) \cdot 0.2+(16 / 289) \cdot 0.25=1 / 17
$$

The maximum error in the calculated value for R is then $1 / 17$ ohms.
3. If $z=f(x, y)$, where $x=r \cos \theta$, and $y=r \sin \theta$, find
(a) $\partial z / \partial r$

Solution: We need to use the chain rule to find $\partial z / \partial r$.

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \\
& =\frac{\partial z}{\partial x} \cdot(\cos \theta)+\frac{\partial z}{\partial y} \cdot(\sin \theta)
\end{aligned}
$$

(b) $\partial z / \partial \theta$

Solution: We need to use the chain rule to find $\partial z / \partial \theta$.

$$
\begin{aligned}
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta} \\
& =\frac{\partial z}{\partial x} \cdot(-r \sin \theta)+\frac{\partial z}{\partial y} \cdot(r \cos \theta)
\end{aligned}
$$

4. Show that any function of the form

$$
z=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

[Hint: Let $u=x+a t$ and $v=x-a t$.

Solution: First, we rewrite our equation using the hint provided. Let $u=x+a t$ and let $v=x-a t$. Then, our function becomes $z(u, v)=f(u)+g(v)$. We will start with the left hand side and show that it is equivalent to the right hand side.
Let's find the partial derivative of z with respect to t.

$$
\begin{aligned}
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial t}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial t} \\
& =\frac{d f}{d u} \cdot a+\frac{d g}{d v} \cdot(-a) \\
& =a\left(\frac{d f}{d u}-\frac{d g}{d v}\right)
\end{aligned}
$$

Now, we find the second partial derivative of z with respect to t.

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial t^{2}} & =\frac{\partial}{\partial t} a\left(\frac{d f}{d u}-\frac{d g}{d v}\right) \\
& =a\left(\frac{d^{2} f}{d u^{2}} \frac{\partial u}{\partial t}-\frac{d^{2} g}{d v^{2}} \frac{\partial v}{\partial t}\right) \\
& =a\left(\frac{d^{2} f}{d u^{2}} \cdot a-\frac{d^{2} g}{d v^{2}} \cdot(-a)\right) \\
& =a^{2}\left(\frac{d^{2} f}{d u^{2}}+\frac{d^{2} g}{d v^{2}}\right)
\end{aligned}
$$

We will show that this is equal to $a^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
The first partial derivative of z with respect to x.

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\
& =\frac{d f}{d u} \cdot 1+\frac{d g}{d v} \cdot 1 \\
& =\frac{d f}{d u}+\frac{d g}{d v}
\end{aligned}
$$

The second partial derivative of z w.r.t. x.

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial x^{2}} & =\frac{\partial}{\partial t}\left(\frac{d f}{d u}+\frac{d g}{d v}\right) \\
& =\frac{d^{2} f}{d u^{2}} \frac{\partial u}{\partial t}+\frac{d^{2} g}{d v^{2}} \frac{\partial v}{\partial t} \\
& =\frac{d^{2} f}{d u^{2}} \cdot 1-\frac{d^{2} g}{d v^{2}} \cdot 1 \\
& =\frac{d^{2} f}{d u^{2}}+\frac{d^{2} g}{d v^{2}}
\end{aligned}
$$

So, indeed

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial t^{2}} & =a^{2}\left(\frac{d^{2} f}{d u^{2}}+\frac{d^{2} g}{d v^{2}}\right) \\
& =a^{2} \frac{\partial^{2} z}{\partial x^{2}}
\end{aligned}
$$

