\qquad

Score: \qquad /15

WORKSHEET 6 - CHAPTER 15 (DUE TUES, APR 7)

Math 2110Q - Spring 2015
Professor Hohn

You must show all of your work to receive full credit!

1. Calculate the value of the integral

$$
\iint_{D} x d A
$$

where D is the region in the first quadrant between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2$.
2. Evaluate the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

by converting to polar coordinates.
3. Evaluate the integral

$$
\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2} y d x d y
$$

by converting to polar coordinates.
4. We define the improper integral (over the entire plane \mathbb{R}^{2})

$$
\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A
$$

where D_{a} is the disk with radius a and center at the origin. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi .
$$

5. Use a double integral to find the area of the region inside the cardioid $r=1+\cos \theta$ and outside the circle $r=3 \cos \theta$.
