\qquad
\qquad

WORKSHEET 6 - CHAPTER 15 (DUE TUES, APR 7)

Math 2110 Q - Spring 2015
Professor Hohn

You must show all of your work to receive full credit!

1. Calculate the value of the integral

$$
\iint_{D} x d A
$$

where D is the region in the first quadrant between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2$.

Solution: Step 1: Draw D
Region D is the region that is between two circles (one of radius 1 and one of radius $\sqrt{2}$) that lies in the first quadrant. Since we have a region that is circular, we will want to use polar coordinates. Then, $1 \leq r \leq \sqrt{2}$ and $0 \leq \theta \leq \pi / 2$. See the picture below.

Step 2: Set up the integral
From the picture, we see that $1 \leq r \leq \sqrt{2}$ and $0 \leq \theta \leq \pi / 2$. So, we have

$$
\iint_{D} x d A=\int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}}(r \cos \theta) r d r d \theta
$$

Step 3: Integrate

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}}(r \cos \theta) r d r d \theta & =\int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}} r^{2} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 2}\left[\frac{r^{3}}{3}\right]_{1}^{\sqrt{2}} \cos \theta d \theta \\
& =\int_{0}^{\pi / 2}\left(\frac{2^{3 / 2}}{3}-\frac{1}{3}\right) \cos \theta d \theta \\
& =\frac{1}{3}\left(2^{3 / 2}-1\right) \int_{0}^{\pi / 2} \cos \theta d \theta \\
& =\frac{1}{3}\left(2^{3 / 2}-1\right)[\sin \theta]_{0}^{\pi / 2} \\
& =\frac{1}{3}\left(2^{3 / 2}-1\right)(1-0) \\
& =\frac{1}{3}\left(2^{3 / 2}-1\right)
\end{aligned}
$$

2. Evaluate the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

by converting to polar coordinates.
Solution: Step 1: Draw D
First, we use the bounds of our integral to describe the region we will integrate over.

$$
y=\sqrt{2 x-x^{2}} \Longrightarrow y^{2}=2 x-x^{2} \Longrightarrow x^{2}-2 x+y^{2}=0 \Longrightarrow(x-1)^{2}+y^{2}=1
$$

Our region is then a half circle that is shifted to the right.
The region we will integrate over is

Step 2: Set up the integral
We set up our integral using polar coordinates. Since $y^{2}=2 x-x^{2}$,

$$
x^{2}+y^{2}=2 x \Longrightarrow r^{2}=2 r \cos \theta \Longrightarrow r=2 \cos \theta
$$

Therefore, $0 \leq r \leq 2 \cos \theta$ and $0 \leq \theta \leq \pi / 2$. Recall that $\sqrt{x^{2}+y^{2}}=r$. Our integral is

$$
\iint_{R} f(r \cos \theta, r \sin \theta) \cdot r d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r \cdot r d r d \theta
$$

Step 3: Integrate.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r \cdot r d r d \theta & =\int_{-\pi / 2}^{\pi / 2}\left[\frac{r^{3}}{3}\right]_{0}^{2 \cos \theta} d \theta \\
& =\frac{1}{3} \int_{0}^{\pi / 2}(2 \cos \theta)^{3} d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2} \cos \theta\left(1-\sin ^{2} \theta\right) d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2}\left(\cos \theta-\cos \theta \sin ^{2} \theta\right) d \theta \\
& =\frac{8}{3}\left[\sin \theta-\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi / 2} \\
& \left.=\frac{8}{3}\left(\left(1-\frac{1}{3}\right)-(0-0)\right)\right) \\
& =\frac{16}{9}
\end{aligned}
$$

3. Evaluate the integral

$$
\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2} y d x d y
$$

by converting to polar coordinates.

Solution: Step 1: Draw D

From the integral given, we know that $-\sqrt{a^{2}-y^{2}} \leq x \leq 0$ and $0 \leq y \leq a$. This means that x has a boundary at $x=0$ and $x=-\sqrt{a^{2}-y^{2}}$. The boundary $x=-\sqrt{a^{2}-y^{2}}$ is the left hand side of the circle $x^{2}+y^{2}=a^{2}$ (circle of radius a). Since $0 \leq y \leq a$, the region we seek is in the upper half plane. Thus, the region D is a quarter of a circle in the second quadrant with radius a, centered at 0 . See picture below.

Step 2: Step up the integral

We will be using polar coordinates. We can see from the picture that $0 \leq r \leq a$ and $\pi / 2 \leq \theta \leq \pi$. So, we have

$$
\iint_{D} x^{2} y d x d y=\int_{\pi / 2}^{\pi} \int_{0}^{a}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta .
$$

Step 3: Integrate

$$
\begin{aligned}
\int_{\pi / 2}^{\pi} \int_{0}^{a}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta & =\int_{\pi / 2}^{\pi} \int_{0}^{a} r^{4} \cos ^{2} \theta \sin \theta d r d \theta \\
& =\int_{\pi / 2}^{\pi}\left[\frac{r^{5}}{5}\right]_{0}^{a} \cos ^{2} \theta \sin \theta d \theta \\
& =\frac{a^{5}}{5} \int_{\pi / 2}^{\pi} \cos ^{2} \theta \sin \theta d \theta \\
& =-\frac{a^{5}}{5} \int_{0}^{-1} u^{2} d u \quad \text { where } u=\cos \theta, d u=-\sin \theta d \theta \\
& =-\frac{a^{5}}{5}\left[\frac{u^{3}}{3}\right]_{0}^{-1} \\
& =-\frac{a^{5}}{5}\left(\frac{-1}{3}-\frac{0}{3}\right) \\
& =\frac{a^{5}}{15}
\end{aligned}
$$

4. We define the improper integral (over the entire plane \mathbb{R}^{2})

$$
\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A
$$

where D_{a} is the disk with radius a and center at the origin. Show that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A=\pi .
$$

Solution: The region D_{a} is a circle of radius a. This is the region we are integrating over.

Since we are integrating over a circle, we want to use polar coordinates.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d A & =\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d A \\
& =\lim _{a \rightarrow \infty} \int_{0}^{2 \pi} \int_{0}^{a} e^{-r^{2}} r d r d \theta \\
& =\lim _{a \rightarrow \infty} \int_{0}^{2 \pi} \int_{0}^{a} e^{-r^{2}} r d r d \theta \\
& =\lim _{a \rightarrow \infty} \int_{0}^{2 \pi} \frac{-1}{2}\left[e^{-r^{2}}\right]_{0}^{a} d \theta \\
& =\lim _{a \rightarrow \infty} \int_{0}^{2 \pi} \frac{-1}{2}\left(e^{-a^{2}}-1\right) d \theta \\
& =\lim _{a \rightarrow \infty}\left[\frac{-1}{2}\left(e^{-a^{2}}-1\right) \theta\right]_{0}^{2 \pi} \\
& =\lim _{a \rightarrow \infty}\left(\frac{-1}{2}\left(e^{-a^{2}}-1\right) 2 \pi\right) \\
& =\lim _{a \rightarrow \infty}-\pi\left(e^{-a^{2}}-1\right) \\
& =\lim _{a \rightarrow \infty}\left(-\pi e^{-a^{2}}+\pi\right) \\
& =\pi
\end{aligned}
$$

$$
\text { (because } \lim _{a \rightarrow \infty} e^{-a^{2}}=0 \text {) }
$$

5. Use a double integral to find the area of the region inside the cardioid $r=1+\cos \theta$ and outside the circle $r=3 \cos \theta$.

Solution: The two functions that describe our region look like

The region we will be integrating over is

We need to divide our region up into two parts since the equation $r=3 \cos \theta, \theta$ is bounded by $-\pi / 2 \leq \theta \leq \pi / 2$. Moreover, the symmetry along the x-axis allows us to worry about computing the area in the top-half plane and then multiplying that area by 2 .

We set up our equation using polar coordinates. Notice that we divided our region in the top-half plane into two pieces.

$$
\iint_{R} d A=2\left(\int_{\pi / 3}^{\pi / 2} \int_{3 \cos \theta}^{1+\cos \theta} r d r d \theta+\int_{\pi / 2}^{\pi} \int_{0}^{1+\cos \theta} r d r d \theta\right)
$$

Now, we solve our integrals. The left one:

$$
\begin{aligned}
\int_{\pi / 3}^{\pi / 2} \int_{3 \cos \theta}^{1+\cos \theta} r d r d \theta & =\int_{\pi / 3}^{\pi / 2}\left[\frac{r^{2}}{2}\right]_{3 \cos \theta}^{1+\cos \theta} d \theta \\
& =\int_{\pi / 3}^{\pi / 2}\left(\frac{(1+\cos \theta)^{2}}{2}-\frac{(3 \cos \theta)^{2}}{2}\right) d \theta \\
& =\frac{1}{2} \int_{\pi / 3}^{\pi / 2}\left(1+2 \cos \theta-8 \cos ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{\pi / 3}^{\pi / 2}(1+2 \cos \theta-4 \cos (2 \theta)-4) d \theta \quad \text { because } \frac{\cos (2 \theta)+1}{2}=\cos ^{2} \theta \\
& =\frac{1}{2} \int_{\pi / 3}^{\pi / 2}(-3+2 \cos \theta-4 \cos (2 \theta)) d \theta \\
& =\frac{1}{2}[-3 \theta+2 \sin \theta-2 \sin (2 \theta)]_{\pi / 3}^{\pi / 2} \\
& =\frac{1}{2}((-3 \pi / 2+2(1)-2(0))-(-\pi+2(\sqrt{3} / 2)-2(\sqrt{3} / 2))) \\
& =-\pi / 4+1
\end{aligned}
$$

The right one:

$$
\begin{aligned}
\int_{\pi / 2}^{\pi} \int_{0}^{1+\cos \theta} r d r d \theta & =\int_{\pi / 2}^{\pi}\left[\frac{r^{2}}{2}\right]_{3 \cos \theta}^{1+\cos \theta} d \theta \\
& =\int_{\pi / 2}^{\pi} \frac{(1+\cos \theta)^{2}}{2} d \theta \\
& =\frac{1}{2} \int_{\pi / 2}^{\pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{\pi / 2}^{\pi}\left(1+2 \cos \theta+\frac{\cos (2 \theta)+1}{2}\right) d \theta \quad \text { because } \frac{\cos (2 \theta)+1}{2}=\cos ^{2} \theta \\
& =\frac{1}{2} \int_{\pi / 2}^{\pi}\left(\frac{3}{2}+2 \cos \theta+\frac{\cos (2 \theta)}{2}\right) d \theta \\
& =\frac{1}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{\sin (2 \theta)}{4}\right]_{\pi / 2}^{\pi} \\
& =\frac{1}{2}\left(\left(\frac{3 \pi}{2}+2(0)+\frac{0}{4}\right)-\left(\frac{3 \pi}{4}+2(1)+\frac{0}{4}\right)\right) \\
& =\frac{1}{2}(\pi / 2+2) \\
& =\frac{3 \pi}{8}-1
\end{aligned}
$$

Then,

$$
\iint_{R} d A=2\left(\int_{\pi / 3}^{\pi / 2} \int_{3 \cos \theta}^{1+\cos \theta} r d r d \theta+\int_{\pi / 2}^{\pi} \int_{0}^{1+\cos \theta} r d r d \theta\right)=\pi / 4
$$

