\qquad

Score: \qquad /15

WORKSHEET 8 - CHAPTER 13, 16 (DUE TUES, APR 28)

Math 2110Q - Spring 2015
Professor Hohn

You must show all of your work to receive full credit!

1. Let $\vec{r}(t)=\left\langle\sqrt{2-t},\left(e^{t}-1\right) / t, \ln (t+1)\right\rangle$.
(a) Find the domain of \vec{r}. Write your answer using interval notation.
(b) Find $\lim _{t \rightarrow 0} \vec{r}(t)$.
(c) Find $\vec{r}^{\prime}(t)$.
(d) Find $\vec{T}(t)$ at the point where $t=1$.
2. Find the curvature of the ellipse $x=3 \cos t, y=4 \sin t$ at the points $(3,0)$ and $(0,4)$.
3. Find the gradient vector field $\vec{F}=\nabla f$ of $f(x, y)=\sqrt{x^{2}+y^{2}}$, sketch the vector field, and draw two level curves with $k=1,2$.
4. Evaluate the line integral

$$
\int_{C} x \sin y d s
$$

where C is the line segment from $(0,3)$ to $(4,6)$.
5. Evaluate the line integral

$$
\int_{C} e^{x} d x
$$

where C its he arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$.

