## Elementary Differential Equations

Math 2410Q (211Q)- Fall 2013

## Professor Hohn

Section 6.3:
28. Consider the differential equation

$$
\frac{d y^{2}}{d t^{2}}-y=e^{2 t}, \quad y(0)=1, \quad y^{\prime}(0)=-1 .
$$

(a) Compute the Laplace transform of both sides of the differential equation

Solution: First, apply the Laplace transform to both sides of the equation.

$$
\begin{aligned}
\mathcal{L}\left[\frac{d y^{2}}{d t^{2}}-y\right] & =\mathcal{L}\left[e^{2 t}\right] \\
\mathcal{L}\left[\frac{d y^{2}}{d t^{2}}\right]-\mathcal{L}[y] & =\frac{1}{s-2} .
\end{aligned}
$$

Now, we need to compute the Laplace transform of $\mathcal{L}\left[\frac{d y^{2}}{d t^{2}}\right]$.

$$
\begin{aligned}
\mathcal{L}\left[\frac{d y^{2}}{d t^{2}}\right] & =\int_{0}^{\infty} \frac{d^{2} y}{d t^{2}} e^{-s t} d t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} y^{\prime \prime} e^{-s t} d t \\
& =\lim _{b \rightarrow \infty}\left\{\left.y^{\prime} e^{-s t}\right|_{t=0} ^{t=b}+s \int_{0}^{b} y^{\prime} e^{-s t} d t\right\} \quad \text { (integration by parts) } \\
& =-y^{\prime}(0)+s \mathcal{L}\left[y^{\prime}\right] \\
& =-y^{\prime}(0)+s(s \mathcal{L}[y]-y(0)) \\
& =s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)
\end{aligned}
$$

So, we have

$$
\begin{aligned}
\mathcal{L}\left[\frac{d y^{2}}{d t^{2}}\right]-\mathcal{L}[y] & =\frac{1}{s-2} \\
\left(s^{2} \mathcal{L}[y]-s y(0)-y^{\prime}(0)\right)-\mathcal{L}[y] & =\frac{1}{s-2} \\
\mathcal{L}[y]\left(s^{2}-1\right)-s y(0)-y^{\prime}(0) & =\frac{1}{s-2}
\end{aligned}
$$

(b) Substitute in the initial conditions and simplify to obtain the Laplace transform of the solution

## Solution:

$$
\begin{aligned}
\mathcal{L}[y]\left(s^{2}-1\right)-s y(0)-y^{\prime}(0) & =\frac{1}{s-2} \\
\mathcal{L}[y]\left(s^{2}-1\right)-s+1 & =\frac{1}{s-2} \\
\mathcal{L}[y]\left(s^{2}-1\right) & =\frac{1}{s-2}+s-1 \\
\mathcal{L}[y] & =\frac{1}{(s-2)\left(s^{2}-1\right)}+\frac{s-1}{s^{2}-1} \\
\mathcal{L}[y] & =\frac{1}{(s-2)(s-1)(s+1)}+\frac{1}{s+1}
\end{aligned}
$$

We simplify further by using partial fractions.

$$
\begin{aligned}
\frac{1}{(s-2)(s-1)(s+1)} & =\frac{A}{s-2}+\frac{B}{s+1}+\frac{C}{s-1} \\
& =\frac{A(s+1)(s-1)}{s-2}+\frac{B(s-2)(s-1)}{s+1}+\frac{C(s-2)(s+1)}{s-1} \\
& =\frac{A s^{2}-A}{s-2}+\frac{B\left(s^{2}-3 s+2\right)}{s+1}+\frac{C\left(s^{2}-s-2\right)}{s-1}
\end{aligned}
$$

We have to solve the following system:

$$
\begin{aligned}
A+B+C & =0 \\
-3 B-C & =0 \\
-A+2 B-2 C & =1
\end{aligned}
$$

So, we should find that $A=1 / 3, B=1 / 6$, and $C=-1 / 2$. Therefore, we have

$$
\begin{aligned}
\mathcal{L}[y] & =\frac{1}{(s-2)(s-1)(s+1)}+\frac{1}{s+1} \\
& =\frac{\frac{1}{3}}{s-2}+\frac{\frac{1}{6}}{s+1}+\frac{-\frac{1}{2}}{s-1}+\frac{1}{s+1} \\
& =\frac{1}{3}\left(\frac{1}{s-2}\right)+\frac{7}{6}\left(\frac{1}{s+1}\right)-\frac{1}{2}\left(\frac{1}{s-1}\right)
\end{aligned}
$$

(c) Find the solution by taking the inverse Laplace transform.

Solution: We take the inverse Laplace transform of both sides of our equation from

Part (b).

$$
\begin{aligned}
\mathcal{L}^{-1}[\mathcal{L}[y]] & =\mathcal{L}^{-1}\left[\frac{1}{3}\left(\frac{1}{s-2}\right)+\frac{7}{6}\left(\frac{1}{s+1}\right)-\frac{1}{2}\left(\frac{1}{s-1}\right)\right] \\
y(t) & =\frac{1}{3} \mathcal{L}^{-1}\left[\frac{1}{s-2}\right]+\frac{7}{6} \mathcal{L}^{-1}\left[\frac{1}{s+1}\right]-\frac{1}{2} \mathcal{L}^{-1}\left[\frac{1}{s-1}\right] \\
y(t) & =\frac{1}{3} e^{2 t}+\frac{7}{6} e^{-t}-\frac{1}{2} e^{t}
\end{aligned}
$$

Page 3

