Final - Preview

Math 2710 – Spring 2014 Professor Hohn

Instructions: These exercises are to be worked on alone! You may use your notes and your textbooks for the course, but you are **not allowed to ask for, receive, nor give others assistance on these exercises** which includes asking the internet, Fields medalists, and/or other textbooks.

- 1. Let R and S be relations on a set A. Prove or give a counterexample for the following:
 - (a) If R and S are equivalence relations, then $R \cap S$ is an equivalence relation.
 - (b) If R and S are equivalence relations, then $R \cup S$ is an equivalence relation.
- 2. Using the definition of a convergent sequence, prove the following:
 - (a) For any real number k, $\lim_{n \to \infty} \frac{k}{n} = 0$.
 - (b) For any real number k > 0, $\lim_{n \to \infty} \frac{1}{n^k} = 0$.
- 3. Fix n > 0. Integers a and b are said to be *congruent modulo* n if a b is divisible by n. That is,

$$a \equiv b \pmod{n}$$
 means $n \mid (a - b)$.

- (a) Prove that congruence modulo n is an equivalence relation on \mathbb{Z} .
- (b) Given any integer $a \in \mathbb{Z}$ let [a] denote the equivalence class of a under the modulo n equivalence proved in the previous part. The division algorithm tells us that there is some $q, r \in \mathbb{Z}$ such that a = qn + r and $0 \le r \le n 1$. Show that [a] = [r].
- 4. Prove that $a^2 \mid b^2$ if and only if $a \mid b$.
- 5. Let A and B be finite sets. Prove that #(A B) = #A #B if and only if $B \subseteq A$.
- 6. Use induction to prove that for every integer $n \ge 2$

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(n-1)n} = 1 - \frac{1}{n}.$$

- 7. Suppose $f: A \to B$. Define a relation R on A by xRy if and only if f(x) = f(y).
 - (a) Prove that R is an equivalence relation.
 - (b) For any $x \in A$, let E_x be the equivalence class of x. That is,

$$E_x = \{ y \in A \mid yRx \}.$$

Let E be the collection of all equivalence classes. That is,

$$E = \{ E_x \mid x \in A \}.$$

Prove that the function $g: A \to E$ defined by $g(x) = E_x$ is surjective.

- (c) Prove that the function $h: E \to B$ defined by $h(E_x) = f(x)$ is injective.
- (d) Prove that $f = h \circ g$. That is, f(x) = h(g(x)) for all $x \in A$. Thus, we can conclude that any function can be written as the composition of a surjective function and an injective function.
- 8. Let G be a group, and let $f: G \to G$ be defined by $f(a) = a^{-1}$.
 - (a) Show that f is a bijection from G to G.
 - (b) Find f^{-1} . (It might help to prove that $(a^{-1})^{-1} = a$.)
- 9. Let P and Q be propositions. Bucky, Mia, and Wolverine are trying to show that $P \implies Q$.
 - (a) Mia shows that $\sim Q \implies \sim P$. Is she done? Why or why not? You may use truth tables to support your answer.
 - (b) Bucky shows that $\sim P \implies \sim Q$. Is he done? Why or why not? You may use truth tables to support your answer.
 - (c) Wolverine shows that $P \land \sim Q \implies False$. Is he done? Why or why not? You may use truth tables to support your answer.
- 10. Find the limit of the sequence $\{s_n\}$ given by $s_n = \frac{(-1)^n}{n+3}$, and prove that the sequence converges to that limit.
- 11. Let A and B be sets. The symmetric difference of A and B is denoted $A\Delta B$ and is defined by

$$A\Delta B = (A - B) \cup (B - A).$$

- (a) Prove that $A\Delta B \subseteq A$ iff $B \subseteq A$.
- (b) Prove that $A\Delta B \subseteq B$ iff $A \subseteq B$.
- (c) Prove that if A and B are finite sets, then $\#(A\Delta B) \leq \#A + \#B$ with equality iff $A \cap B = \emptyset$.
- (d) Show by counterexample that the following proposition is false: Given any finite sets A and B, either $\#(A\Delta B) \leq \#A$ or $\#(A\Delta B) \leq \#B$.
- 12. Let G be a group under the binary operation \star and let a_1, a_2, \ldots, a_n be elements in (G, \star) . Use induction to show that for all $n \ge 2$,

$$(a_1 \star a_2 \star a_3 \star \ldots \star a_n)^{-1} = a_n^{-1} \star a_{n-1}^{-1} \star \ldots \star a_2^{-1} \star a_1^{-1}.$$

13. Math Joke: A mathematician runs into the hospital delivery room right as his wife delivers their first baby. His exhausted wife looks up at him and asks, "Is it a boy or a girl?" After a long pause, the mathematician answers, "Yes." Explain this (fantastic) joke.