Final - Preview

Math 2710 - Spring 2014
 Professor Hohn

Instructions: These exercises are to be worked on alone! You may use your notes and your textbooks for the course, but you are not allowed to ask for, receive, nor give others assistance on these exercises which includes asking the internet, Fields medalists, and/or other textbooks.

1. Let R and S be relations on a set A. Prove or give a counterexample for the following:
(a) If R and S are equivalence relations, then $R \cap S$ is an equivalence relation.
(b) If R and S are equivalence relations, then $R \cup S$ is an equivalence relation.
2. Using the definition of a convergent sequence, prove the following:
(a) For any real number $k, \lim _{n \rightarrow \infty} \frac{k}{n}=0$.
(b) For any real number $k>0, \lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0$.
3. Fix $n>0$. Integers a and b are said to be congruent modulo n if $a-b$ is divisible by n. That is,

$$
a \equiv b \quad(\bmod n) \quad \text { means } \quad n \mid(a-b) .
$$

(a) Prove that congruence modulo n is an equivalence relation on \mathbb{Z}.
(b) Given any integer $a \in \mathbb{Z}$ let [a] denote the equivalence class of a under the modulo n equivalence proved in the previous part. The division algorithm tells us that there is some $q, r \in \mathbb{Z}$ such that $a=q n+r$ and $0 \leqslant r \leqslant n-1$. Show that $[a]=[r]$.
4. Prove that $a^{2} \mid b^{2}$ if and only if $a \mid b$.
5. Let A and B be finite sets. Prove that $\#(A-B)=\# A-\# B$ if and only if $B \subseteq A$.
6. Use induction to prove that for every integer $n \geqslant 2$

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n}=1-\frac{1}{n} .
$$

7. Suppose $f: A \rightarrow B$. Define a relation R on A by $x R y$ if and only if $f(x)=f(y)$.
(a) Prove that R is an equivalence relation.
(b) For any $x \in A$, let E_{x} be the equivalence class of x. That is,

$$
E_{x}=\{y \in A \mid y R x\} .
$$

Let E be the collection of all equivalence classes. That is,

$$
E=\left\{E_{x} \mid x \in A\right\} .
$$

Prove that the function $g: A \rightarrow E$ defined by $g(x)=E_{x}$ is surjective.
(c) Prove that the function $h: E \rightarrow B$ defined by $h\left(E_{x}\right)=f(x)$ is injective.
(d) Prove that $f=h \circ g$. That is, $f(x)=h(g(x))$ for all $x \in A$. Thus, we can conclude that any function can be written as the composition of a surjective function and an injective function.
8. Let G be a group, and let $f: G \rightarrow G$ be defined by $f(a)=a^{-1}$.
(a) Show that f is a bijection from G to G.
(b) Find f^{-1}. (It might help to prove that $\left(a^{-1}\right)^{-1}=a$.)
9. Let P and Q be propositions. Bucky, Mia, and Wolverine are trying to show that $P \Longrightarrow Q$.
(a) Mia shows that $\sim Q \Longrightarrow \sim P$. Is she done? Why or why not? You may use truth tables to support your answer.
(b) Bucky shows that $\sim P \Longrightarrow \sim Q$. Is he done? Why or why not? You may use truth tables to support your answer.
(c) Wolverine shows that $P \wedge \sim Q \Longrightarrow$ False. Is he done? Why or why not? You may use truth tables to support your answer.
10. Find the limit of the sequence $\left\{s_{n}\right\}$ given by $s_{n}=\frac{(-1)^{n}}{n+3}$, and prove that the sequence converges to that limit.
11. Let A and B be sets. The symmetric difference of A and B is denoted $A \Delta B$ and is defined by

$$
A \Delta B=(A-B) \cup(B-A) .
$$

(a) Prove that $A \Delta B \subseteq A$ iff $B \subseteq A$.
(b) Prove that $A \Delta B \subseteq B$ iff $A \subseteq B$.
(c) Prove that if A and B are finite sets, then $\#(A \Delta B) \leqslant \# A+\# B$ with equality iff $A \cap B=\varnothing$.
(d) Show by counterexample that the following proposition is false: Given any finite sets A and B, either $\#(A \Delta B) \leqslant \# A$ or $\#(A \Delta B) \leqslant \# B$.
12. Let G be a group under the binary operation \star and let $a_{1}, a_{2}, \ldots, a_{n}$ be elements in (G, \star). Use induction to show that for all $n \geqslant 2$,

$$
\left(a_{1} \star a_{2} \star a_{3} \star \ldots \star a_{n}\right)^{-1}=a_{n}^{-1} \star a_{n-1}^{-1} \star \ldots \star a_{2}^{-1} \star a_{1}^{-1} .
$$

13. Math Joke: A mathematician runs into the hospital delivery room right as his wife delivers their first baby. His exhausted wife looks up at him and asks, "Is it a boy or a girl?" After a long pause, the mathematician answers, "Yes." Explain this (fantastic) joke.
