Midterm 2-Preview

Math 2710 - Spring 2014
Professor Hohn
Instructions: These exercises are to be worked on alone! You may use your notes and your textbooks for the course, but you are not allowed to ask for, receive, nor give others assistance on these exercises which includes asking the internet, Fields medalists, and/or other textbooks.

1. Use induction to prove Bernoulli's inequality: If $1+x>0$, then

$$
(1+x)^{n} \geqslant 1+n x
$$

for all $n \in \mathbb{N}$.
2. Let S and T be finite sets. Prove that if $\#(T-S)=\#(S-T)$, then $\# S=\# T$.
3. Define a relation R on the set of all integers \mathbb{Z} by $x R y$ iff $x-y=2 k$ for some integer k. Verify that R is an equivalence relation and describe the equivalence class $E_{5}=\{s \in \mathbb{Z}: s R 5\}$.
4. Suppose that $f: A \rightarrow B$. Let $C \subseteq A$ and $D \subseteq B$. Recall that

$$
f^{-1}(D)=\{x \in A \mid f(x) \in D\} \subseteq A .
$$

Show that the following hold:
(a) $C \subseteq f^{-1}[f(C)]$,
(b) $f\left[f^{-1}(D)\right] \subseteq D$.
5. Suppose that $f: A \rightarrow B$ and suppose that $C \subseteq A$ and $D \subseteq B$.
(a) Prove or give a counterexample: $f(C) \subseteq D$ iff $C \subseteq f^{-1}(D)$.
(b) If f is injective, then $f^{-1}[f(C)]=C$.
(c) If f is surjective, then $f\left[f^{-1}(D)\right]=D$.
6. Let A and B be finite sets.
(a) Prove that there exists a surjection $f: A \rightarrow B$ iff $\# A \geqslant \# B$.
(b) Prove that every subset of a finite set is finite.
7. Suppose that $f: A \rightarrow B$ is any function. Then, a function $g: B \rightarrow A$ is called a left inverse for f if $g(f(x))=x$ for all $x \in A$. Similarly, a function $h: B \rightarrow A$ is called a right inverse for f if $f(h(y))=y$ for all $y \in B$.
(a) Prove that f has a left inverse iff f is injective.
(b) Prove that f has a right inverse iff f is surjective.
8. Let $f_{1}: A_{1} \rightarrow A_{2}, f_{2}: A_{2} \rightarrow A_{3}, \ldots, f_{n}: A_{n} \rightarrow A_{n+1}$ be bijective functions. Use induction to show that the composition $f_{n} \circ f_{n-1} \circ \cdots \circ f_{1}$ that maps A_{1} to A_{n+1} is a bijective function and

$$
\left(f_{n} \circ f_{n-1} \circ \cdots \circ f_{1}\right)^{-1}=f_{1}^{-1} \circ f_{2}^{-1} \circ \cdots \circ f_{n}^{-1}
$$

9. Let S be a set and $\mathcal{P}(S)$ the power set of S. For sets $A, B \subseteq \mathcal{P}(S)$, we say that $A \sim B$ if there exists a bijective function $f: A \rightarrow B$. Show that \sim is an equivalence relation.
10. Let A, B, and C be finite sets. Suppose that $A \subseteq B \subseteq C$ and $\# A=\# C$. Prove that $\# A=\# B$ and $\# B=\# C$.
11. Prove that $1^{3}+2^{3}+\cdots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ for all $n \in \mathbb{N}$.
12. Let A and B be sets. The symmetric difference of A and B is denoted $A \Delta B$ and is defined by

$$
A \Delta B=(A-B) \cup(B-A) .
$$

(a) Prove that $A \Delta B \subseteq A$ iff $B \subseteq A$.
(b) Prove that $A \Delta B \subseteq B$ iff $A \subseteq B$.
(c) Prove that if A and B are finite sets, then $\#(A \Delta B) \leqslant \# A+\# B$ with equality iff $A \cap B=\varnothing$.
(d) Show by counterexample that the following proposition is false: Given any finite sets A and B, either $\#(A \Delta B) \leqslant \# A$ or $\#(A \Delta B) \leqslant \# B$.

Definition Clarification (Practice)

Determine if each statement is true or false. Justify your answer.

1. Sets:
(a) If $A \subseteq B$ and $A \neq B$, then A is called a proper subset of B.
(b) The empty set is a subset of every set.
(c) If $A \cap B=\varnothing$, then either $A=\varnothing$ or $B=\varnothing$.
(d) If $a \in A-B$, then $x \in A$ or $x \notin B$.
2. Relations:
(a) $(a, b)=(c, d)$ iff $a=c$ and $b=d$.
(b) A relation between A and B is an order set subset of $A \times B$.
(c) In any relation R on a set S, we always have $x R x$ for all $x \in S$.
(d) $A \times B=\{\{a, b\}: a \in A$ and $b \in B\}$.
(e) A relations is an equivalence relation if it is reflexive, symmetric, and transitive.
(f) If R is a relation on S, then $\{y \in S: y R x\}$ determines a partition of S.
3. Induction:
(a) If S is nonempty subset of \mathbb{N}, then there exists an element $m \in S$ such that $m \geqslant k$ for all $k \in S$.
(b) A proof using mathematical induction consists of two parts: establishing the basis for induction and verifying the induction hypothesis.
(c) Suppose m is a natural number greater than 1 . To prove $P(k)$ is true for all $k \geqslant m$, we must first show that $P(k)$ is false for all k such that $1 \leqslant k<m$.
4. Functions:
(a) A function from A into B is a nonempty relation $f \subseteq A \times B$ such that if $(a, b) \in f$ and $(a, \hat{b}) \in f$ then $b=\hat{b}$.
(b) A function $f: A \rightarrow B$ is injective if for all a and \hat{a} in $A, f(a)=f(\hat{a})$ implies that $a=\hat{a}$.
(c) If $f: A \rightarrow B$ and C is a nonempty subset of A, then $f(C)$ is a nonempty subset of B.
(d) If $f: A \rightarrow B$ is surjective and $y \in B$, then $f^{-1}(y) \in A$.
(e) If $f: A \rightarrow B$, then A is the domain of f and B is the image of f.
(f) A function $f: A \rightarrow B$ is surjective if $\operatorname{dom} f=A$.
(g) The composition of two surjective functions is always surjective.
5. Cardinality:
(a) Two sets S and T are equipotent (or equinumerous) if there exists a bijection $f: S \rightarrow T$.
(b) If a cardinal number is not finite, it is said to be infinite.
(c) If a set S is finite, then S is equipotent (or equinumerous) with \mathbb{N}_{m} for some $m \in \mathbb{N}$.
