Homework 12 (Due Tues, Apr 29)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. Statements to think about:

True or False. Justify your answer.

- (a) If $\{s_n\}$ is a sequence and $s_i = s_j$, then i = j.
- (b) If $s_n \to s$, then for every $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that n > N implies $|s_n s| < \varepsilon$.
- (c) If for every $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that n > N implies $s_n < \varepsilon$, then $s_n \to 0$.
- (d) If $s_n \to k$ and $t_n \to k$ then $s_n = t_n$ for all $n \in \mathbb{N}$.
- 2. * Show that $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. (Hint: Given any $\varepsilon > 0$, we have to find N such that n > N implies that $\frac{1}{\sqrt{n}} < \varepsilon$.)
- 3. * Prove that if a sequence converges, its limit is unique. (Hint: Suppose that the sequence $\{s_n\}$ has two different limits s and t, and show that s = t by showing that $|s t| < \varepsilon$. You will need the triangle inequality: $|x + y| \leq |x| + |y|$.)
- 4. * Suppose that $\lim s_n = 0$. If $\{t_n\}$ is a bounded sequence, prove that $\lim (s_n t_n) = 0$.