Homework 12 (Due Tues, Apr 29)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. Statements to think about:

True or False. Justify your answer.

- (a) If $\{s_n\}$ is a sequence and $s_i = s_j$, then i = j.
- (b) If $s_n \to s$, then for every $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that n > N implies $|s_n s| < \varepsilon$.
- (c) If for every $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that n > N implies $s_n < \varepsilon$, then $s_n \to 0$.
- (d) If $s_n \to k$ and $t_n \to k$ then $s_n = t_n$ for all $n \in \mathbb{N}$.
- 2. * Show that $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. (Hint: Given any $\varepsilon > 0$, we have to find $N \in \mathbb{R}$ such that n > N implies that $\frac{1}{\sqrt{n}} < \varepsilon$.)

Solution: Let $\varepsilon > 0$ be arbitrary. Define $N \in \mathbb{N}$ to be any integer large enough such that $N > \frac{1}{\varepsilon^2}$; notice that by simple algebraic manipulation, this implies that $\frac{1}{\sqrt{N}} < \varepsilon$. Then, for any integer $n \ge N$,

$$\left|\frac{1}{\sqrt{n}} - 0\right| = \frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{N}} < \varepsilon$$

Therefore, we have shown that given any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $n \ge N$, $\left|\frac{1}{\sqrt{n}} - 0\right| < \varepsilon$. Thus $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$.

3. * Prove that if a sequence converges, its limit is unique. (Hint: Suppose that the sequence $\{s_n\}$ has two different limits s and t, and show that s = t by showing that $|s - t| < \varepsilon$. You will need the triangle inequality: $|x + y| \leq |x| + |y|$.)

Solution:

Suppose that $s, t \in \mathbb{R}$ such that $\lim_{n \to \infty} s_n = s$ and $\lim_{n \to \infty} s_n = t$. We will show that s = t, which then will prove that the limit is unique. To show that s = t we will show that |s - t| = 0, which we will do by showing that given any $\varepsilon > 0$, $|s - t| < \varepsilon$.

To this end, take $\varepsilon > 0$ arbitrarily; note that this implies that $\frac{\varepsilon}{2} > 0$. Since $s_n \to s$, there exists some $N_1 \in \mathbb{N}$ such that $|s_n - s| < \frac{\varepsilon}{2}$ for all $n \ge N_1$. Similarly, there exists some

 $N_2 \in \mathbb{N}$ such that $|s_n - t| < \frac{\varepsilon}{2}$ for all $n \ge N_2$. Set $N = \max\{N_1, N_2\}$. Since $N \ge N_1$ and $N \ge N_2$, we have $|s_N - s| < \frac{\varepsilon}{2}$ and $|s_N - t| < \frac{\varepsilon}{2}$. Therefore,

$$|s-t| = |s-s_N+s_N-t| \le |s-s_N| + |s_N-t|$$
$$= |s_N-s| + |s_N-t| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus we have shown that given any arbitrary $\varepsilon > 0$, $|s - t| < \varepsilon$ implying that |s - t| = 0, hence s = t.

4. * Suppose that $\lim s_n = 0$. If $\{t_n\}$ is a bounded sequence, prove that $\lim (s_n t_n) = 0$.

Solution: Suppose that $\lim s_n = 0$ and $\{t_n\}$ is a bounded sequence. Since $\{t_n\}$ is a bounded sequence, there exists an M > 0 such that $|t_n| < M$. Pick $\varepsilon > 0$ arbitrarily; note that this implies that $\frac{\varepsilon}{M} > 0$. Since $\lim s_n = 0$, there exists an $N \in \mathbb{N}$ such that for any integer $n \ge N$, $|s_n - 0| < \frac{\varepsilon}{M}$. Therefore for any integer $n \ge N$,

$$|s_n t_n - 0| = |s_n| |t_n| = |s_n - 0| |t_n|$$
$$< \frac{\varepsilon}{M} \cdot M = \varepsilon$$

Thus, we have shown that given any arbitrary $\varepsilon > 0$, $|s_n t_n - 0| < \varepsilon$. Hence, $\lim(s_n t_n) = 0$.