Homework 1 (Due Tues, Jan 28)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove or give a counterexample to each statement.

1. Let a and b be real numbers. Prove that if ab = 0, then a = 0 or b = 0.

Solution:

Proof. (Proof by contradiction) Suppose ab = 0, and $a \neq 0$ and $b \neq 0$. Since $a \neq 0$, we can divide both sides of the equation ab = 0 by a. As a result, we have $b = 0 \notin$ (Contradiction). Therefore, if ab = 0, then a = 0 or b = 0.

2. $\forall x \in \mathbb{R}, (x^2 + 5x + 7 > 0)$. (Note that \forall means "for all." The statement reads, "For all x in the real numbers, $(x^2 + 5x + 7 > 0)$.")

Solution:

Proof. For all $x \in \mathbb{R}$,

$$x^{2} + 5x + 7 = \left(x^{2} + 5x + \frac{25}{4}\right) - \frac{25}{4} + 7$$
$$= \left(x + \frac{5}{2}\right)^{2} + \frac{3}{4}.$$

Since for all $x \in \mathbb{R}$, $\left(x + \frac{5}{2}\right)^2 \ge 0$, and $\frac{3}{4} > 0$, $\left(x + \frac{5}{2}\right)^2 + \frac{3}{4} > 0$. Therefore, $x^2 + 5x + 7 > 0$.

3. If m and n are integers with mn odd, then m and n are odd.

Solution:

Proof. (Proof by contrapositive) We want to show that if m or n is even, then mn is even. Without loss of generality, let m be even. Then, m = 2k for some integer k, and

$$mn = (2k)n$$
$$= 2(kn)$$

where kn is an integer. Hence, mn is divisible by 2 and is even.