Homework 1 (Due Tues, Jan 28)

Math 2710 - Spring 2014
Professor Hohn
Using the proof techniques we have learned in class, prove or give a counterexample to each statement.

1. Let a and b be real numbers. Prove that if $a b=0$, then $a=0$ or $b=0$.

Solution:

Proof. (Proof by contradiction) Suppose $a b=0$, and $a \neq 0$ and $b \neq 0$. Since $a \neq 0$, we can divide both sides of the equation $a b=0$ by a. As a result, we have $b=0$ 亿 (Contradiction). Therefore, if $a b=0$, then $a=0$ or $b=0$.
2. $\forall x \in \mathbb{R},\left(x^{2}+5 x+7>0\right)$. (Note that \forall means "for all." The statement reads, "For all x in the real numbers, $\left(x^{2}+5 x+7>0\right)$.")

Solution:

Proof. For all $x \in \mathbb{R}$,

$$
\begin{aligned}
x^{2}+5 x+7 & =\left(x^{2}+5 x+\frac{25}{4}\right)-\frac{25}{4}+7 \\
& =\left(x+\frac{5}{2}\right)^{2}+\frac{3}{4} .
\end{aligned}
$$

Since for all $x \in \mathbb{R},\left(x+\frac{5}{2}\right)^{2} \geq 0$, and $\frac{3}{4}>0,\left(x+\frac{5}{2}\right)^{2}+\frac{3}{4}>0$. Therefore, $x^{2}+5 x+7>0$.
3. If m and n are integers with $m n$ odd, then m and n are odd.

Solution:

Proof. (Proof by contrapositive) We want to show that if m or n is even, then $m n$ is even. Without loss of generality, let m be even. Then, $m=2 k$ for some integer k, and

$$
\begin{aligned}
m n & =(2 k) n \\
& =2(k n)
\end{aligned}
$$

where $k n$ is an integer. Hence, $m n$ is divisible by 2 and is even.

