Homework 2 (Due Tues, Feb 4)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove or give a counterexample to each statement.

1. (pg. 20 #75) The definition of the limit of a function, $\lim_{x \to a} f(x) = L$, can be expressed using quantifiers as

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, \, (0 < |x - a| < \delta \implies |f(x) - L| < \epsilon).$$

Use quantifiers to express the negation of this statement, which would be a definition of $\lim_{x\to a} f(x) \neq L$.

Solution: Recall that $\sim (P \implies Q)$ is logically equivalent to $P \land \sim Q$. The negation of the statement above is:

 $\exists \epsilon > 0 \quad \forall \delta > 0 \quad \exists x \neq a, \, (0 < |x - a| < \delta \text{ and } |f(x) - L| \geqslant \epsilon) \,.$

2. (pg. 50 #10) If $ac \mid bc$ and $c \neq 0$, prove that $a \mid b$.

Solution:

Proof. Let $ac \mid bc, c \neq 0$. Then, for some $q \in \mathbb{Z}$,

$$bc = (ac)q$$

$$0 = acq - bc$$

$$0 = c(aq - b),$$

where $(aq - b) \in \mathbb{Z}$. Then, c = 0 or aq - b = 0. By assumption, $c \neq 0$, and so b = aq. Hence, $a \mid b$. 3. (pg. 50 #99, revised) Prove that if $a \mid b$, then $a^2 \mid b^2$.

Solution:

Proof. Suppose $a \mid b$. Then, b = aq for $q \in \mathbb{Z}$, and

$$b^{2} = b(aq)$$
$$= (aq)(aq)$$
$$= a^{2}q^{2}.$$

Thus, $a^2 \mid b^2$.