Homework 3 (Due Tues, Feb 11)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. (pg. 50 #73) Prove that $\{ax + by \mid x, y \in \mathbb{Z}\} = \{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\}.$

Solution:

Proof. Suppose $e \in \{ax + by \mid x, y \in \mathbb{Z}\}$. Then, e = ax + by for some $x, y \in \mathbb{Z}$. By the Linear Diophantine Theorem, $gcd(a, b) \mid e$. Hence, $\exists n \in \mathbb{Z}$ such that $e = n \cdot gcd(a, b)$. Then, $e \in \{n \cdot gcd(a, b) \mid n \in \mathbb{Z}\}$. So, $\{ax + by \mid x, y \in \mathbb{Z}\} \subseteq \{n \cdot gcd(a, b) \mid n \in \mathbb{Z}\}$.

Let $f \in \{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\}$. Then, $f = n \cdot \gcd(a, b)$ for some $n \in \mathbb{Z}$. By the Euclidean Algorithm, $\exists x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$. Thus, $f = n \cdot (ax + by)$ and $f = a \cdot nx + b \cdot ny$. Let $\hat{x} = nx$ and $\hat{y} = ny$. Then, $f = a\hat{x} + b\hat{y}$ for some $\hat{x}, \hat{y} \in \mathbb{Z}$. Hence, $f \in \{ax + by \mid x, y \in \mathbb{Z}\}$. Therefore, the set $\{n \cdot \gcd(a, b) \mid n \in \mathbb{Z}\} \subseteq \{ax + by \mid x, y \in \mathbb{Z}\}$, and the sets are equal.

2. (pg. 50 #83) Let a, b, c be nonzero integers. Their greatest common divisor gcd(a, b, c) is the largest positive integer that divides all of them. Prove that

gcd(a, b, c) = gcd(a, gcd(b, c)).

Solution:

Proof. Let e be the gcd(a, gcd(b, c)) and let d = gcd(b, c). By the Euclidean Algorithm, $e = a \cdot x + d \cdot w$ for $x, w \in \mathbb{Z}$. In addition, $d = b \cdot y + c \cdot z$ for $y, z \in \mathbb{Z}$. Then, $e = a \cdot x + b \cdot yw + c \cdot zw$. Since $e \mid a$ and $e \mid d, e \mid b$ and $e \mid c$. Hence, e is a common divisor of a, b, c.

Suppose *e* is not the greatest common divisor of *a*, *b*, and *c*. Then, there exists an $\hat{e} = \gcd(a, b, c)$ where $\hat{e} > e$. By definition of the gcd, $\hat{e} \mid a, \hat{e} \mid b$, and $\hat{e} \mid c$. Thus, $\hat{e} \mid (a \cdot x + b \cdot yw + c \cdot zw)$ and $\hat{e} \mid e$. Then, $e = \hat{e} \cdot n$ for some positive $n \in \mathbb{Z}$. Because $e < \hat{e}$ and $e = \hat{e} \cdot n$, it follows that $\hat{e} \cdot n < \hat{e} \notin$. Thus, $e = \gcd(a, b, c) = \gcd(a, \gcd(b, c))$.

3. (pg. 50 #102) Prove or give a counter example.

If gcd(a, b) = 1 and ax + by = c has a positive integer solution, then so does ax + by = d when d > c.

Solution:

Counterexample: Let a = 2, b = 3. The gcd(2,3) = 1 and 2x + 3y = 5 has the positive integer solution (1,1). However, the equation 2x + 3y = 6 does not have a solution.