Homework 3 (Due Tues, Feb 11)

Math 2710 - Spring 2014

Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. (pg. $50 \# 73)$ Prove that $\{a x+b y \mid x, y \in \mathbb{Z}\}=\{n \cdot \operatorname{gcd}(a, b) \mid n \in \mathbb{Z}\}$.

Solution:

Proof. Suppose $e \in\{a x+b y \mid x, y \in \mathbb{Z}\}$. Then, $e=a x+b y$ for some $x, y \in \mathbb{Z}$. By the Linear Diophantine Theorem, $\operatorname{gcd}(a, b) \mid e$. Hence, $\exists n \in \mathbb{Z}$ such that $e=n \cdot \operatorname{gcd}(a, b)$. Then, $e \in\{n \cdot \operatorname{gcd}(a, b) \mid n \in \mathbb{Z}\}$. So, $\{a x+b y \mid x, y \in \mathbb{Z}\} \subseteq\{n \cdot \operatorname{gcd}(a, b) \mid n \in \mathbb{Z}\}$.
Let $f \in\{n \cdot \operatorname{gcd}(a, b) \mid n \in \mathbb{Z}\}$. Then, $f=n \cdot \operatorname{gcd}(a, b)$ for some $n \in \mathbb{Z}$. By the Euclidean Algorithm, $\exists x, y \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(a, b)$. Thus, $f=n \cdot(a x+b y)$ and $f=$ $a \cdot n x+b \cdot n y$. Let $\hat{x}=n x$ and $\hat{y}=n y$. Then, $f=a \hat{x}+b \hat{y}$ for some $\hat{x}, \hat{y} \in \mathbb{Z}$. Hence, $f \in\{a x+b y \mid x, y \in \mathbb{Z}\}$. Therefore, the set $\{n \cdot \operatorname{gcd}(a, b) \mid n \in \mathbb{Z}\} \subseteq\{a x+b y \mid x, y \in \mathbb{Z}\}$, and the sets are equal.
2. (pg. $50 \# 83$) Let a, b, c be nonzero integers. Their greatest common divisor $\operatorname{gcd}(a, b, c)$ is the largest positive integer that divides all of them. Prove that

$$
\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c)) .
$$

Solution:

Proof. Let e be the $\operatorname{gcd}(a, \operatorname{gcd}(b, c))$ and let $d=\operatorname{gcd}(b, c)$. By the Euclidean Algorithm, $e=a \cdot x+d \cdot w$ for $x, w \in \mathbb{Z}$. In addition, $d=b \cdot y+c \cdot z$ for $y, z \in \mathbb{Z}$. Then, $e=a \cdot x+b \cdot y w+c \cdot z w$. Since $e \mid a$ and $e|d, e| b$ and $e \mid c$. Hence, e is a common divisor of a, b, c.
Suppose e is not the greatest common divisor of a, b, and c. Then, there exists an $\hat{e}=$ $\operatorname{gcd}(a, b, c)$ where $\hat{e}>e$. By definition of the $\operatorname{gcd}, \hat{e}|a, \hat{e}| b$, and $\hat{e} \mid c$. Thus, $\hat{e} \mid$ $(a \cdot x+b \cdot y w+c \cdot z w)$ and $\hat{e} \mid e$. Then, $e=\hat{e} \cdot n$ for some positive $n \in \mathbb{Z}$. Because $e<\hat{e}$ and $e=\hat{e} \cdot n$, it follows that $\hat{e} \cdot n<\hat{e}$ 亿. Thus, $e=\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.
3. (pg. $50 \# 102$) Prove or give a counter example.

If $\operatorname{gcd}(a, b)=1$ and $a x+b y=c$ has a positive integer solution, then so does $a x+b y=d$ when $d>c$.

Solution:

Counterexample: Let $a=2, b=3$. The $\operatorname{gcd}(2,3)=1$ and $2 x+3 y=5$ has the positive integer solution $(1,1)$. However, the equation $2 x+3 y=6$ does not have a solution.

