Homework 4 (Due Tues, Feb 18)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. (pg. 50 #74) Show that gcd(ab, c) = gcd(b, c) if gcd(a, c) = 1. Is it true in general that

 $gcd(ab, c) = gcd(a, c) \cdot gcd(b, c)$?

Solution:

Proof. Let $a, b, c \in \mathbb{Z}$ and assume that gcd(a, c) = 1. By the Euclidean Algorithm, $a \cdot x + c \cdot y = 1$ for some $x, y \in \mathbb{Z}$. By multiplying both sides of the equation by b, $ab \cdot x + c \cdot by = b$. Let d = gcd(ab, c). By the definition of gcd, $d \mid ab$ and $d \mid c$. Hence, $d \mid (ab \cdot x + c \cdot by)$ and $d \mid b$. Therefore, d is a common divisor of b and c.

Suppose d is not the greatest common divisor of b and c. Then, there exists a $\hat{d} > d$ that is the greatest common divisor of b and c. By the Euclidean Algorithm, $\exists p, q \in \mathbb{Z}$ such that $ab \cdot p + c \cdot q = d$. By the definition of the gcd, $\hat{d} \mid b$ and $\hat{d} \mid c$, and $\hat{d} \mid (b \cdot ap + c \cdot q)$. Thus, $\hat{d} \mid d \notin$. It follows that d is the gcd(b, c).

Let a = b = c = 3. Then, $gcd(3 \cdot 3, 3) = gcd(9, 3) = 3$, and gcd(3, 3) = 3. Therefore, if $gcd(ab, c) = gcd(a, c) \cdot gcd(b, c)$, then $3 = 3 \cdot 3 \notin$. So, $gcd(ab, c) \neq gcd(a, c) \cdot gcd(b, c)$ for all $a, b, c \in \mathbb{Z}$.

2. (pg. 50 #84) Prove that the Diophantine equation ax + by + cz = e has a solution if and only if $gcd(a, b, c) \mid e$.

Solution:

Proof. (\implies) Let $a, b, c \in \mathbb{Z}$, and suppose e = ax + by + cz for some $x, y, z \in \mathbb{Z}$. Let d be the gcd(a, b, c). By the definition of gcd, $d \mid a, d \mid b$, and $d \mid c$. Hence, $d \mid (ax + by + cz)$ and $d \mid e$. Therefore, $gcd(a, b, c) \mid e$.

 (\Leftarrow) Let $d = \gcd(a, b, c)$ and $f = \gcd(b, c)$. By #83 (Homework 3), $\gcd(a, b, c) = \gcd(a, \gcd(b, c))$. By the Euclidean Algorithm, $d = a \cdot m + f \cdot n$ for $m, n \in \mathbb{Z}$. Additionally, $f = b \cdot p + c \cdot q$ for $p, q \in \mathbb{Z}$. Then, $d = a \cdot m + b \cdot np + c \cdot nq$. Suppose $\gcd(a, b, c) \mid e$. By

the definition of divides, there exists $k \in \mathbb{Z}$ such that

 $e = d \cdot k$ = $(a \cdot m + b \cdot np + c \cdot nq) \cdot k$ = $a \cdot mk + b \cdot npk + c \cdot nqk$ = ax + by + cz

where x = mk, y = npk, and z = nqk. Hence, there exists integers x, y, z such that e = ax + by + cz.

3. (pg. 50 #107) Let a, b, c, where a is a positive integer and b and c are odd primes. Prove that if $a \mid (3b+2c)$ and $a \mid (2b+3c)$, then a = 1 or 5. Give examples to show that both these values for a are possible.

Solution:

Proof. Let a, b, c, where a is a positive integer and b and c are odd primes, both not equal to 5. Suppose $a \mid (3b + 2c)$ and $a \mid (2b + 3c)$. Then, $a \mid (3(2b + 3c) - 2(3b + 2c))$ and $a \mid (3(3b + 2c) - 2(2b + 3c))$. Hence, $a \mid 5c$ and $a \mid 5b$. Since b and c are odd primes, there exist integers x, y such that bx + cy = 1. Since $a \mid 5c$ and $a \mid 5b$, $a \mid (5b \cdot x + 5c \cdot y)$, and $a \mid 5 \cdot 1$. Then, $5 = a \cdot n$ for some $n \in \mathbb{Z}$. By the Unique Factorization Them, 5 is equal to a product of primes. So, either a = 5 or a = 1.

Example 1: Let b = 3 and c = 5. Then, if $a \mid 19$ and $a \mid 21$, then a = 1. Example 2: Let b = 3 and c = 13. Then, if $a \mid 35$ and $a \mid 45$, then a = 5 or a = 1.