Homework 4 (Due Tues, Feb 18)

Math 2710 - Spring 2014

Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. (pg. $50 \# 74)$ Show that $\operatorname{gcd}(a b, c)=\operatorname{gcd}(b, c)$ if $\operatorname{gcd}(a, c)=1$. Is it true in general that

$$
\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \cdot \operatorname{gcd}(b, c) ?
$$

Solution:

Proof. Let $a, b, c \in \mathbb{Z}$ and assume that $\operatorname{gcd}(a, c)=1$. By the Euclidean Algorithm, $a \cdot x+c \cdot y=1$ for some $x, y \in \mathbb{Z}$. By multiplying both sides of the equation by b, $a b \cdot x+c \cdot b y=b$. Let $d=\operatorname{gcd}(a b, c)$. By the definition of $\operatorname{gcd}, d \mid a b$ and $d \mid c$. Hence, $d \mid(a b \cdot x+c \cdot b y)$ and $d \mid b$. Therefore, d is a common divisor of b and c.
Suppose d is not the greatest common divisor of b and c. Then, there exists a $\hat{d}>d$ that is the greatest common divisor of b and c. By the Euclidean Algorithm, $\exists p, q \in \mathbb{Z}$ such that $a b \cdot p+c \cdot q=d$. By the definition of the gcd, $\hat{d} \mid b$ and $\hat{d} \mid c$, and $\hat{d} \mid(b \cdot a p+c \cdot q)$. Thus, $\hat{d} \mid d \downarrow$. It follows that d is the $\operatorname{gcd}(b, c)$.

Let $a=b=c=3$. Then, $\operatorname{gcd}(3 \cdot 3,3)=\operatorname{gcd}(9,3)=3$, and $\operatorname{gcd}(3,3)=3$. Therefore, if $\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \cdot \operatorname{gcd}(b, c)$, then $3=3 \cdot 3$ 亿. So, $\operatorname{gcd}(a b, c) \neq \operatorname{gcd}(a, c) \cdot \operatorname{gcd}(b, c)$ for all $a, b, c \in \mathbb{Z}$.
2. (pg. 50 \#84) Prove that the Diophantine equation $a x+b y+c z=e$ has a solution if and only if $\operatorname{gcd}(a, b, c) \mid e$.

Solution:

Proof. (\Longrightarrow) Let $a, b, c \in \mathbb{Z}$, and suppose $e=a x+b y+c z$ for some $x, y, z \in \mathbb{Z}$. Let d be the $\operatorname{gcd}(a, b, c)$. By the definition of $\operatorname{gcd}, d|a, d| b$, and $d \mid c$. Hence, $d \mid(a x+b y+c z)$ and $d \mid e$. Therefore, $\operatorname{gcd}(a, b, c) \mid e$.
(\Longleftarrow) Let $d=\operatorname{gcd}(a, b, c)$ and $f=\operatorname{gcd}(b, c)$. By \#83 (Homework 3), $\operatorname{gcd}(a, b, c)=$ $\operatorname{gcd}(a, \operatorname{gcd}(b, c))$. By the Euclidean Algorithm, $d=a \cdot m+f \cdot n$ for $m, n \in \mathbb{Z}$. Additionally, $f=b \cdot p+c \cdot q$ for $p, q \in \mathbb{Z}$. Then, $d=a \cdot m+b \cdot n p+c \cdot n q$. Suppose $\operatorname{gcd}(a, b, c) \mid e$. By
the definition of divides, there exists $k \in \mathbb{Z}$ such that

$$
\begin{aligned}
e & =d \cdot k \\
& =(a \cdot m+b \cdot n p+c \cdot n q) \cdot k \\
& =a \cdot m k+b \cdot n p k+c \cdot n q k \\
& =a x+b y+c z
\end{aligned}
$$

where $x=m k, y=n p k$, and $z=n q k$. Hence, there exists integers x, y, z such that $e=a x+b y+c z$.
3. (pg. $50 \# 107$) Let a, b, c, where a is a positive integer and b and c are odd primes. Prove that if $a \mid(3 b+2 c)$ and $a \mid(2 b+3 c)$, then $a=1$ or 5 . Give examples to show that both these values for a are possible.

Solution:

Proof. Let a, b, c, where a is a positive integer and b and c are odd primes, both not equal to 5. Suppose $a \mid(3 b+2 c)$ and $a \mid(2 b+3 c)$. Then, $a \mid(3(2 b+3 c)-2(3 b+2 c))$ and $a \mid(3(3 b+2 c)-2(2 b+3 c))$. Hence, $a \mid 5 c$ and $a \mid 5 b$. Since b and c are odd primes, there exist integers x, y such that $b x+c y=1$. Since $a \mid 5 c$ and $a|5 b, a|(5 b \cdot x+5 c \cdot y)$, and $a \mid 5 \cdot 1$. Then, $5=a \cdot n$ for some $n \in \mathbb{Z}$. By the Unique Factorization Them, 5 is equal to a product of primes. So, either $a=5$ or $a=1$.

Example 1: Let $b=3$ and $c=5$. Then, if $a \mid 19$ and $a \mid 21$, then $a=1$.
Example 2: Let $b=3$ and $c=13$. Then, if $a \mid 35$ and $a \mid 45$, then $a=5$ or $a=1$.

