Homework 6 (Due Tues, March 11)

Math 2710 - Spring 2014
Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. Let A, B, C be sets. Prove the following:
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(b) $A-(B \cup C)=(A-B) \cap(A-C)$
(c) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
2. Let A be a set and $\left\{B_{i}\right\}_{i \in I}$ an indexed family of sets. Prove the following:

$$
\left(\bigcup_{i \in I} B_{i}\right) \cap A=\bigcup_{i \in I}\left(B_{i} \cap A\right) .
$$

3. ${ }^{*}$ Let A be a set and let $\left\{B_{i}\right\}_{i \in I}$ be an indexed family of sets. Prove the following is true.

$$
A-\bigcup_{i \in I} B_{i}=\bigcap_{i \in I}\left(A-B_{i}\right)
$$

4. Show that if $A \subset B$ then $\mathcal{P}(A) \subset \mathcal{P}(B)$. $(\mathcal{P}(A)$ is the power set of A.)
5. Let $S=\{1,2,3\}$. In each case, give an example of a relation R on S that has the stated properties.
(a) R is not symmetric, not reflexive, and not transitive.
(b) R is transitive and reflexive, but not symmetric.
6. * A relation R is antisymmetric if $x R y$ and $y R x$ together imply that $x=y$. A relation R on S is a partial ordering if R is reflexive, antisymmetric, and transitive. For example, the relation " \leqslant " on \mathbb{R} is a partial ordering. Show that each of the following is a partial ordering.
(a) The inclusion relation " \subseteq " on the power set of a given set A.
(b) The divisibility relation on \mathbb{N}. (If $a, b \in \mathbb{N}$, define $a \mid b$ to mean that $b=a \cdot q$ for some $q \in \mathbb{N}$.)
7. Determine each of the following sets.
(a) $\mathcal{P}(\{2\})$
(b) $\mathcal{P}(\mathcal{P}(\{2\}))$
(c) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\{2\})))$
8. Given any two sets S and T, the Cartesian product of S and T is the new set $S \times T$ defined by

$$
S \times T=\{(s, t): s \in S, t \in T\} .
$$

If S and T are sets, $A \subseteq S$ and $B \subseteq T$, prove that $A \times B \subseteq S \times T$.
9. * Prove that A and B are disjoint if and only if $A \subseteq B^{\prime}$.
10. Prove or give a counterexample to the assertion $A \cup(B-A)=B$.

