Homework 6 (Due Tues, March 11)

Math 2710 - Spring 2014
Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. Let A, B, C be sets. Prove the following:
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Solution:

$$
\begin{aligned}
x \in A \cap(B \cup C) & \Longleftrightarrow x \in A \text { and } x \in(B \cup C) \\
& \Longleftrightarrow x \in A \text { and }(x \in B \text { or } x \in C) \\
& \Longleftrightarrow(x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C) \\
& \Longleftrightarrow x \in(A \cap B) \text { or } x \in(A \cap C) \\
& \Longleftrightarrow x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

(b) $A-(B \cup C)=(A-B) \cap(A-C)$

Solution:

$$
\begin{aligned}
x \in A-(B \cup C) & \Longleftrightarrow x \in A \text { and } x \notin(B \cup C) \\
& \Longleftrightarrow x \in A \text { and }(x \notin B \text { and } x \notin C) \\
& \Longleftrightarrow(x \in A \text { and } x \notin B) \text { and }(x \in A \text { and } x \notin C) \\
& \Longleftrightarrow x \in(A-B) \text { and } x \in(A-C) \\
& \Longleftrightarrow x \in(A-B) \cap(A-C)
\end{aligned}
$$

(c) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Solution:

$$
\begin{aligned}
x \in(A \cup B)^{\prime} & \Longleftrightarrow x \notin(A \text { or } B) \\
& \Longleftrightarrow x \notin A \text { and } x \notin B \\
& \Longleftrightarrow x \in A^{\prime} \text { and } x \in B^{\prime} \\
& \Longleftrightarrow x \in A^{\prime} \cap B^{\prime}
\end{aligned}
$$

2. Let A be a set and $\left\{B_{i}\right\}_{i \in I}$ an indexed family of sets. Prove the following:

$$
\left(\bigcup_{i \in I} B_{i}\right) \cap A=\bigcup_{i \in I}\left(B_{i} \cap A\right) .
$$

Solution:

$$
\begin{aligned}
x \in\left(\bigcup_{i \in I} B_{i}\right) \cap A & \Longleftrightarrow x \in\left(\bigcup_{i \in I} B_{i}\right) \text { and } x \in A \\
& \Longleftrightarrow(\exists i \in I)\left(x \in B_{i}\right) \text { and } x \in A \\
& \Longleftrightarrow(\exists i \in I)\left(x \in B_{i} \text { and } x \in A\right) \\
& \Longleftrightarrow(\exists i \in I)\left(x \in B_{i} \cap A\right) \\
& \Longleftrightarrow x \in \bigcup_{i \in I}\left(B_{i} \cap A\right)
\end{aligned}
$$

3. ${ }^{*}$ Let A be a set and let $\left\{B_{i}\right\}_{i \in I}$ be an indexed family of sets. Prove the following is true.

$$
A-\bigcup_{i \in I} B_{i}=\bigcap_{i \in I}\left(A-B_{i}\right)
$$

Solution:

Proof.

$$
\begin{aligned}
x \in A-\bigcup_{i \in I} B_{i} & \Longleftrightarrow x \in A \text { and } x \notin \bigcup_{i \in I} B_{i} \\
& \Longleftrightarrow x \in A \text { and }\left(x \notin B_{i}\right)(\forall i \in I) \\
& \Longleftrightarrow(\forall i \in I)\left(x \in A \text { and } x \notin B_{i}\right) \\
& \Longleftrightarrow(\forall i \in I)\left(x \in\left(A-B_{i}\right)\right) \\
& \Longleftrightarrow x \in \bigcap_{i \in I}\left(A-B_{i}\right)
\end{aligned}
$$

4. Show that if $A \subset B$ then $\mathcal{P}(A) \subset \mathcal{P}(B) .(\mathcal{P}(A)$ is the power set of A.)

Solution: Let $X \in \mathcal{P}(A)$. By definition of the power set, $X \subseteq A$. By assumption $A \subset B$, so since $X \subseteq A$ and $A \subset B$, it follows that $X \subset B$. Hence, $X \in \mathcal{P}(B)$. Thus, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. To show that $\mathcal{P}(A) \subset \mathcal{P}(B)$, we will show that $\mathcal{P}(A) \neq \mathcal{P}(B)$.
Since $A \subset B, \exists x \in B-A$. Hence, $\{x\} \subseteq B$ and $\{x\} \nsubseteq A$. Therefore, $\{x\} \subset \mathcal{P}(B)$ and $\{x\} \not \subset \mathcal{P}(A)$. Thus, $\mathcal{P}(A) \neq \mathcal{P}(B)$, and $\mathcal{P}(A) \subset \mathcal{P}(B)$.
5. Let $S=\{1,2,3\}$. In each case, give an example of a relation R on S that has the stated properties.
(a) R is not symmetric, not reflexive, and not transitive.

Solution: Define the relation R on the set S by the following:

$$
R=\{(1,2),(3,3),(2,3)\} .
$$

R is not reflexive since R does not have the relations $(1,1)$ and $(2,2) . \quad R$ is not symmetric since $(2,1)$ and $(3,2)$ do not exist in R. R is not transitive because $(1,2)$ and $(2,3)$ exist in R, but $(1,3)$ does not.
(b) R is transitive and reflexive, but not symmetric.

Solution: Let R be the relation " \leqslant " - less than or equal to - on the set S. It is always true that $x \leqslant x$, so R is reflexive. If $x \leqslant y$ and $y \leqslant z$, then it follows that $x \leqslant y \leqslant z$ and $x \leqslant z$. Thus, R is transitive. However, if $x \leqslant y$ is does not follow that $y \leqslant x$. For example, let $x=1, y=2$. Then, $1 \leqslant 2$, but $2 \leqslant 1$. Thus, R is not symmetric.
6. * A relation R is antisymmetric if $x R y$ and $y R x$ together imply that $x=y$. A relation R on S is a partial ordering if R is reflexive, antisymmetric, and transitive. For example, the relation " \leqslant " on \mathbb{R} is a partial ordering. Show that each of the following is a partial ordering.
(a) The inclusion relation " \subseteq " on the power set of a given set A.

Solution: Let A be a set, and let $\mathcal{P}(A)$ represent the power set of A. Define the relation \sim to be the inclusion relation on the power set of A. To show \sim is a partial ordering, we will show that \sim is reflexive, antisymmetric, and transitive.

Let $X, Y, Z \in \mathcal{P}(A)$. Since $X \subseteq X, X$ is related to itself, and \sim is reflexive.
Suppose $X \sim Y$ and $Y \sim X$. Then, $X \subseteq Y$ and $Y \subseteq X$, and $X=Y$. Hence, \sim is antisymmetric.

Suppose $X \sim Y$ and $Y \sim Z$. Then, $X \subseteq Y$ and $Y \subseteq Z$. So $X \subseteq Z$ and $X \sim Z$. Hence, \sim is transitive.

Thus, \sim is a partial ordering.
(b) The divisibility relation on \mathbb{N}. (If $a, b \in \mathbb{N}$, define $a \mid b$ to mean that $b=a \cdot q$ for some $q \in \mathbb{N}$.)

Solution: Let R be the divisibility relation on \mathbb{N}. To prove that R is a partial ordering, we will show R is reflexive, antisymmetric, and transitive.

Let $a, b, c \in \mathbb{N}$. Then, $a=a \cdot 1$ and $a \mid a$.
Suppose $a \mid b$ and $b \mid a$. Then, $b=a \cdot q$ and $a=b \cdot p$ for some $p, q \in \mathbb{N}$. So, $a=(a \cdot q) \cdot p$ and $p \cdot q=1$ which implies $p=q=1$. Thus, $a=b$.

Suppose $a \mid b$ and $b \mid c$. Then, $\exists p, q \in \mathbb{N}$ such that $b=a \cdot p$ and $c=b \cdot q$. So, $c=(a \cdot p) \cdot q$ and since $p q \in \mathbb{N}, c=a \cdot p q$. Thus, $a \mid c$ and R is transitive.

Therefore, R is a partial ordering.
7. Determine each of the following sets.
(a) $\mathcal{P}(\{2\})$

Solution: Let $A=\{2\}$. Then,

$$
\begin{aligned}
\mathcal{P}(A) & =\{\varnothing, A\} \\
& =\{\varnothing,\{2\}\}
\end{aligned}
$$

(b) $\mathcal{P}(\mathcal{P}(\{2\}))$

Solution: Let $A=\{2\}, B=\varnothing$. Then,

$$
\begin{aligned}
\mathcal{P}(\mathcal{P}(A)) & =\mathcal{P}(\{B, A\}) \\
& =\{\varnothing,\{A\},\{B\},\{A, B\}\} \\
& =\{\varnothing,\{\{2\}\},\{\varnothing\},\{\{2\}, \varnothing\}\}
\end{aligned}
$$

(c) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\{2\})))$

Solution: Let $A=\varnothing, B=\{\{2\}\}, C=\{\varnothing\}, D=\{\{2\}, \varnothing\}$. Then,

$$
\begin{aligned}
\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))= & \mathcal{P}(\{A, B, C, D\}) \\
= & \{\varnothing,\{A\},\{B\},\{C\},\{D\},\{A, B\},\{A, C\},\{A, D\},\{B, C\},\{B, D\},\{C, D\} \\
& \{A, B, C\},\{A, B, D\},\{A, C, D\},\{B, C, D\},\{A, B, C, D\}\} \\
= & \{\varnothing,\{\varnothing\},\{\{\{2\}\}\},\{\{\varnothing\}\},\{\{\{2\}, \varnothing\}\},\{\varnothing,\{\{2\}\}\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\{2\}, \varnothing\}\}, \\
& \{\{\{2\}\},\{\varnothing\}\},\{\{\{2\}\},\{\{2\}, \varnothing\}\},\{\{\varnothing\},\{\{2\}, \varnothing\}\},\{\varnothing,\{\{2\}\},\{\varnothing\}\} \\
& \{\varnothing,\{\{2\}\},\{\{2\}, \varnothing \varnothing\}\},\{\varnothing,\{\varnothing\},\{\{2\}, \varnothing\}\},\{\{\{2\}\},\{\varnothing\},\{\{2\}, \varnothing\}\} \\
& \{\varnothing,\{\{2\}\},\{\varnothing\},\{\{2\}, \varnothing \varnothing\}\}\}
\end{aligned}
$$

8. Given any two sets S and T, the Cartesian product of S and T is the new set $S \times T$ defined by

$$
S \times T=\{(s, t): s \in S, t \in T\}
$$

If S and T are sets, $A \subseteq S$ and $B \subseteq T$, prove that $A \times B \subseteq S \times T$.

Solution: Let A and B be sets and let $(x, y) \in A \times B$. By definition, $x \in A$ and $y \in B$. By assumption, $A \subseteq S$, so $x \in S$. Likewise, $B \subseteq T$ and $y \in T$. Hence, $(x, y) \in S \times T$ and $A \times B \subseteq S \times T$.
9. * Prove that A and B are disjoint if and only if $A \subseteq B^{\prime}$.

Solution: (\Longrightarrow) Suppose $A \cap B=\varnothing$. Let $x \in A$. Since $A \cap B=\varnothing$, if $x \in A, x \notin B$. Thus, $x \in B^{\prime}$, and $A \subseteq B^{\prime}$.
(\Longleftarrow) Suppose $A \subseteq B^{\prime}$ and suppose $x \in A \cap B$. Then, $x \in A$ and $x \in B$. By assumption, if $x \in A, x \notin B$. Contradiction \downarrow. Thus, $\nexists x \in A \cap B$, and $A \cap B=\varnothing$.
10. Prove or give a counterexample to the assertion $A \cup(B-A)=B$.

Solution: Let $A=\{1,2,3\}$ and $B=\{3,4,5\}$. Then, $B-A=\{4,5\}$.

$$
A \cup(B-A)=\{1,2,3,4,5\} \neq\{3,4,5\}=B .
$$

