Homework 6 (Due Tues, March 11)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

- 1. Let A, B, C be sets. Prove the following:
 - (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Solution:

$$\begin{aligned} x \in A \cap (B \cup C) &\iff x \in A \text{ and } x \in (B \cup C) \\ &\iff x \in A \text{ and } (x \in B \text{ or } x \in C) \\ &\iff (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \\ &\iff x \in (A \cap B) \text{ or } x \in (A \cap C) \\ &\iff x \in (A \cap B) \cup (A \cap C) \end{aligned}$$

(b)
$$A - (B \cup C) = (A - B) \cap (A - C)$$

Solution:

$$x \in A - (B \cup C) \iff x \in A \text{ and } x \notin (B \cup C)$$
$$\iff x \in A \text{ and } (x \notin B \text{ and } x \notin C)$$
$$\iff (x \in A \text{ and } x \notin B) \text{ and } (x \in A \text{ and } x \notin C)$$
$$\iff x \in (A - B) \text{ and } x \in (A - C)$$
$$\iff x \in (A - B) \cap (A - C)$$

(c) $(A \cup B)' = A' \cap B'$

Solution:

$$x \in (A \cup B)' \iff x \notin (A \text{ or } B)$$
$$\iff x \notin A \text{ and } x \notin B$$
$$\iff x \in A' \text{ and } x \in B'$$
$$\iff x \in A' \cap B'$$

2. Let A be a set and $\{B_i\}_{i\in I}$ an indexed family of sets. Prove the following:

$$\left(\bigcup_{i\in I} B_i\right) \cap A = \bigcup_{i\in I} (B_i \cap A).$$

Solution:

$$x \in \left(\bigcup_{i \in I} B_i\right) \cap A \iff x \in \left(\bigcup_{i \in I} B_i\right) \text{ and } x \in A$$
$$\iff (\exists i \in I)(x \in B_i) \text{ and } x \in A$$
$$\iff (\exists i \in I)(x \in B_i \text{ and } x \in A)$$
$$\iff (\exists i \in I)(x \in B_i \cap A)$$
$$\iff x \in \bigcup_{i \in I} (B_i \cap A)$$

3. * Let A be a set and let $\{B_i\}_{i \in I}$ be an indexed family of sets. Prove the following is true.

$$A - \bigcup_{i \in I} B_i = \bigcap_{i \in I} (A - B_i)$$

Solution:

Proof.

$$\begin{aligned} x \in A - \bigcup_{i \in I} B_i \iff x \in A \text{ and } x \notin \bigcup_{i \in I} B_i \\ \iff x \in A \text{ and } (x \notin B_i) (\forall i \in I) \\ \iff (\forall i \in I) (x \in A \text{ and } x \notin B_i) \\ \iff (\forall i \in I) (x \in (A - B_i)) \\ \iff x \in \bigcap_{i \in I} (A - B_i) \end{aligned}$$

4. Show that if $A \subset B$ then $\mathcal{P}(A) \subset \mathcal{P}(B)$. ($\mathcal{P}(A)$ is the power set of A.)

Solution: Let $X \in \mathcal{P}(A)$. By definition of the power set, $X \subseteq A$. By assumption $A \subset B$, so since $X \subseteq A$ and $A \subset B$, it follows that $X \subset B$. Hence, $X \in \mathcal{P}(B)$. Thus, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. To show that $\mathcal{P}(A) \subset \mathcal{P}(B)$, we will show that $\mathcal{P}(A) \neq \mathcal{P}(B)$. Since $A \subset B$, $\exists x \in B - A$. Hence, $\{x\} \subseteq B$ and $\{x\} \notin A$. Therefore, $\{x\} \subset \mathcal{P}(B)$ and $\{x\} \notin \mathcal{P}(A)$. Thus, $\mathcal{P}(A) \neq \mathcal{P}(B)$, and $\mathcal{P}(A) \subset \mathcal{P}(B)$.

- 5. Let $S = \{1, 2, 3\}$. In each case, give an example of a relation R on S that has the stated properties.
 - (a) R is not symmetric, not reflexive, and not transitive.

Solution: Define the relation R on the set S by the following:

$$R = \{(1,2), (3,3), (2,3)\}.$$

R is not reflexive since R does not have the relations (1,1) and (2,2). R is not symmetric since (2,1) and (3,2) do not exist in R. R is not transitive because (1,2) and (2,3) exist in R, but (1,3) does not.

(b) R is transitive and reflexive, but not symmetric.

Solution: Let R be the relation " \leq " – less than or equal to – on the set S. It is always true that $x \leq x$, so R is reflexive. If $x \leq y$ and $y \leq z$, then it follows that $x \leq y \leq z$ and $x \leq z$. Thus, R is transitive. However, if $x \leq y$ is does not follow that $y \leq x$. For example, let x = 1, y = 2. Then, $1 \leq 2$, but $2 \leq 1$. Thus, R is not symmetric.

- 6. * A relation R is antisymmetric if xRy and yRx together imply that x = y. A relation R on S is a partial ordering if R is reflexive, antisymmetric, and transitive. For example, the relation " \leq " on \mathbb{R} is a partial ordering. Show that each of the following is a partial ordering.
 - (a) The inclusion relation " \subseteq " on the power set of a given set A.

Solution: Let A be a set, and let $\mathcal{P}(A)$ represent the power set of A. Define the relation \sim to be the inclusion relation on the power set of A. To show \sim is a partial ordering, we will show that \sim is reflexive, antisymmetric, and transitive.

Let $X, Y, Z \in \mathcal{P}(A)$. Since $X \subseteq X, X$ is related to itself, and \sim is reflexive.

Suppose $X \sim Y$ and $Y \sim X$. Then, $X \subseteq Y$ and $Y \subseteq X$, and X = Y. Hence, \sim is antisymmetric.

Suppose $X \sim Y$ and $Y \sim Z$. Then, $X \subseteq Y$ and $Y \subseteq Z$. So $X \subseteq Z$ and $X \sim Z$. Hence, \sim is transitive.

Thus, \sim is a partial ordering.

(b) The divisibility relation on \mathbb{N} . (If $a, b \in \mathbb{N}$, define $a \mid b$ to mean that $b = a \cdot q$ for some $q \in \mathbb{N}$.)

Solution: Let R be the divisibility relation on \mathbb{N} . To prove that R is a partial ordering, we will show R is reflexive, antisymmetric, and transitive.

Let $a, b, c \in \mathbb{N}$. Then, $a = a \cdot 1$ and $a \mid a$.

Suppose $a \mid b$ and $b \mid a$. Then, $b = a \cdot q$ and $a = b \cdot p$ for some $p, q \in \mathbb{N}$. So, $a = (a \cdot q) \cdot p$ and $p \cdot q = 1$ which implies p = q = 1. Thus, a = b.

Suppose $a \mid b$ and $b \mid c$. Then, $\exists p, q \in \mathbb{N}$ such that $b = a \cdot p$ and $c = b \cdot q$. So, $c = (a \cdot p) \cdot q$ and since $pq \in \mathbb{N}$, $c = a \cdot pq$. Thus, $a \mid c$ and R is transitive.

Therefore, R is a partial ordering.

- 7. Determine each of the following sets.
 - (a) $\mathcal{P}(\{2\})$

Solution: Let $A = \{2\}$. Then,

 $\mathcal{P}(A) = \{ \emptyset, A \}$ $= \{ \emptyset, \{2\} \}.$

(b) $\mathcal{P}(\mathcal{P}(\{2\}))$

Solution: Let $A = \{2\}, B = \emptyset$. Then,

$$\mathcal{P}(\mathcal{P}(A)) = \mathcal{P}(\{B, A\})$$
$$= \left\{ \emptyset, \{A\}, \{B\}, \{A, B\} \right\}$$
$$= \left\{ \emptyset, \{\{2\}\}, \{\emptyset\}, \{\{2\}, \emptyset\} \right\}$$

(c) $\mathcal{P}(\mathcal{P}(\{2\})))$

 $\begin{aligned} \text{Solution: Let } A &= \emptyset, B = \{\{2\}\}, C = \{\emptyset\}, D = \{\{2\}, \emptyset\}. \text{ Then,} \\ \mathcal{P}(\mathcal{P}(\mathcal{A}))) &= \mathcal{P}(\{A, B, C, D\}) \\ &= \left\{\emptyset, \{A\}, \{B\}, \{C\}, \{D\}, \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}, \{C, D\}, \\ \{A, B, C\}, \{A, B, D\}, \{A, C, D\}, \{B, C, D\}, \{A, B, C, D\} \right\} \\ &= \left\{\emptyset, \{\emptyset\}, \left\{\{\{2\}\}\}, \{\{\emptyset\}\}, \left\{\{\{2\}, \emptyset\}\}, \left\{\{\{2\}, \emptyset\}\}, \left\{\{\emptyset\}, \{\{2\}, \emptyset\}\}, \left\{\{\emptyset\}, \{\{2\}, \emptyset\}\}, \left\{\{\emptyset\}, \{\{2\}, \emptyset\}\}, \left\{\{\{2\}, \emptyset\}\}, \left\{\{2\}, \emptyset\}\}, \left\{\{\{2\}, \emptyset\}\}, \left\{\{2\}, \emptyset\}, \left\{\{2\}, \emptyset, \left\{\{2\}, \emptyset, \left\{\{2\}, \emptyset, \left\{\{2\}, \emptyset, \left\{\{2\}, \emptyset, \left\{\{2\}, \emptyset, \left\{2\}, \emptyset\right\}, \left\{\{2\}, \emptyset, \left\{2\}, \left\{$

8. Given any two sets S and T, the Cartesian product of S and T is the new set $S \times T$ defined by

$$S \times T = \{(s,t) : s \in S, t \in T\}.$$

If S and T are sets, $A \subseteq S$ and $B \subseteq T$, prove that $A \times B \subseteq S \times T$.

Solution: Let A and B be sets and let $(x, y) \in A \times B$. By definition, $x \in A$ and $y \in B$. By assumption, $A \subseteq S$, so $x \in S$. Likewise, $B \subseteq T$ and $y \in T$. Hence, $(x, y) \in S \times T$ and $A \times B \subseteq S \times T$.

9. * Prove that A and B are disjoint if and only if $A \subseteq B'$.

Solution: (\implies) Suppose $A \cap B = \emptyset$. Let $x \in A$. Since $A \cap B = \emptyset$, if $x \in A, x \notin B$. Thus, $x \in B'$, and $A \subseteq B'$. (\Leftarrow) Suppose $A \subseteq B'$ and suppose $x \in A \cap B$. Then, $x \in A$ and $x \in B$. By assumption, if $x \in A, x \notin B$. Contradiction \notin . Thus, $\nexists x \in A \cap B$, and $A \cap B = \emptyset$.

10. Prove or give a counterexample to the assertion $A \cup (B - A) = B$.

Solution: Let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$. Then, $B - A = \{4, 5\}$. $A \cup (B - A) = \{1, 2, 3, 4, 5\} \neq \{3, 4, 5\} = B$.