Homework 7 (Due Tues, March 25)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. * Prove that the inequality $n^2 \ge n$ holds for every integer.

Solution: Let $n \in \mathbb{Z}$. If $n \leq 0$, then $n^2 \geq n$ for all n since $n^2 \geq 0 \geq n$. Hence, the inequality holds for all negative integers and n = 0. Now, we will prove the inequality holds for all $n \geq 1$ via induction on n.

First, we will prove the base case, P(1).

 $1^2 \ge 1$

and P(1) is true.

Now, assume P(k) is true. That is, $k^2 \ge k$. We will show that P(k+1) is true.

$$(k+1)^2 = k^2 + 2k + 1$$

$$\geq k + 2k + 1 \qquad \text{by } P(k)$$

$$= 3k + 1$$

$$\geq k + 1 \qquad \text{since } k \geq 1$$

Thus, $P(k) \implies P(k+1)$ is true, and by the Principle of Mathematical Induction, $n^2 \ge n$ for all $n \in \mathbb{N}$.

2. (pg.105 # 33) Use induction to prove that

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^n} \ge 1 + \frac{n}{2}.$$

Solution: (via induction on n)

First, we will show the base case, P(0), is true.

$$\frac{1}{2^0} = \frac{1}{1} \ge 1 + \frac{0}{2}$$

and P(0) is true.

Now, assume P(k) is true. That is, $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^k} \ge 1 + \frac{k}{2}$. We will show that P(k+1) is true.

$$\begin{aligned} \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^k} + \frac{1}{2^k + 1} + \ldots + \frac{1}{2^k + 2^k} & \ge 1 + \frac{k}{2} + \frac{1}{2^k + 1} + \ldots + \frac{1}{2^k + 2^k} \text{ (by } P(k)) \\ & \ge 1 + \frac{k}{2} + \frac{1}{2^k + 2^k} + \ldots + \frac{1}{2^k + 2^k} \\ & = 1 + \frac{k}{2} + \frac{2^k}{2^k + 2^k} \\ & = 1 + \frac{k}{2} + \frac{2^k}{2^{k+1}} \\ & = 1 + \frac{k}{2} + \frac{1}{2} \\ & = 1 + \frac{k + 1}{2} \end{aligned}$$

Hence, by the Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{Z}$ where $n \ge 0$.

3. (pg. 108 #63) If
$$a = \frac{1+\sqrt{5}}{2}$$
 and $b = \frac{1-\sqrt{5}}{2}$, prove that $f_n = \frac{a^n - b^n}{\sqrt{5}}$ for all $n \in \mathbb{N}$

Solution: (via induction – v4)

The definition of f_n involves the recursion formula $f_n = f_{n-1} + f_{n-2}$. For this reason, we will individually verify P(1), P(2), and P(3).

Base case – P(1) or f_1 :

$$\frac{a-b}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)}{\sqrt{5}} = \frac{\frac{2\sqrt{5}}{2}}{\sqrt{5}} = 1 = f_1$$

P(2) or f_2 :

$$\frac{a^2 - b^2}{\sqrt{5}} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^2 - \left(\frac{1 - \sqrt{5}}{2}\right)^2}{\sqrt{5}} = \frac{\frac{4\sqrt{5}}{4}}{\sqrt{5}} = 1 = f_2$$

P(3):

$$\frac{a^3 - b^3}{\sqrt{5}} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^3 - \left(\frac{1 - \sqrt{5}}{2}\right)^3}{\sqrt{5}} = \frac{\frac{16\sqrt{5}}{8}}{\sqrt{5}} = 2 = f_3$$

Now, assume for all $3 \leq t \leq k$, P(t) is true. We will show that P(k+1) is true.

$$f_{k+1} = f_k + f_{k-1} \quad \text{(by the recursion definition of } f_{k+1}\text{)}$$

$$= \frac{a^k - b^k}{\sqrt{5}} + \frac{a^{k-1} - b^{k-1}}{\sqrt{5}}$$

$$= \frac{a^{k-1}(a+1) - b^{k-1}(b+1)}{\sqrt{5}}$$

$$= \frac{a^{k-1}(a^2) - b^{k-1}(b^2)}{\sqrt{5}} \quad \text{(since } a+1 = a^2 \text{ and } b+1 = b^2\text{)}$$

$$= \frac{a^{k+1} - b^{k+1}}{\sqrt{5}}$$

So, by the Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.