
Homework 7 (Due Tues, March 25)

Math 2710 – Spring 2014

Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. * Prove that the inequality n2 ě n holds for every integer.

Solution: Let n P Z. If n ď 0, then n2 ě n for all n since n2 ě 0 ě n. Hence, the
inequality holds for all negative integers and n “ 0. Now, we will prove the inequality
holds for all n ě 1 via induction on n.

First, we will prove the base case, P p1q.

12 ě 1

and P p1q is true.

Now, assume P pkq is true. That is, k2 ě k. We will show that P pk ` 1q is true.

pk ` 1q2 “ k2 ` 2k ` 1

ě k ` 2k ` 1 by P pkq

“ 3k ` 1

ě k ` 1 since k ě 1

Thus, P pkq ùñ P pk` 1q is true, and by the Principle of Mathematical Induction, n2 ě n
for all n P N.
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Solution: (via induction on n)

First, we will show the base case, P p0q, is true.
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and P p0q is true.
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Hence, by the Principle of Mathematical Induction, P pnq is true for all n P Z where n ě 0.
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Solution: (via induction – v4)

The definition of fn involves the recursion formula fn “ fn´1 ` fn´2. For this reason, we
will individually verify P p1q, P p2q, and P p3q.

Base case – P p1q or f1:
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P p2q or f2:
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Now, assume for all 3 ď t ď k, P ptq is true. We will show that P pk ` 1q is true.
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fk`1 “ fk ` fk´1 (by the recursion definition of fk`1)
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So, by the Principle of Mathematical Induction, P pnq is true for all n P N.
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