Homework 7 (Due Tues, March 25)

Math 2710 - Spring 2014
Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. * Prove that the inequality $n^{2} \geqslant n$ holds for every integer.

Solution: Let $n \in \mathbb{Z}$. If $n \leqslant 0$, then $n^{2} \geqslant n$ for all n since $n^{2} \geqslant 0 \geqslant n$. Hence, the inequality holds for all negative integers and $n=0$. Now, we will prove the inequality holds for all $n \geqslant 1$ via induction on n.

First, we will prove the base case, $P(1)$.

$$
1^{2} \geqslant 1
$$

and $P(1)$ is true.
Now, assume $P(k)$ is true. That is, $k^{2} \geqslant k$. We will show that $P(k+1)$ is true.

$$
\begin{aligned}
(k+1)^{2} & =k^{2}+2 k+1 \\
& \geqslant k+2 k+1 \quad \text { by } P(k) \\
& =3 k+1 \\
& \geqslant k+1 \quad \text { since } k \geqslant 1
\end{aligned}
$$

Thus, $P(k) \Longrightarrow P(k+1)$ is true, and by the Principle of Mathematical Induction, $n^{2} \geqslant n$ for all $n \in \mathbb{N}$.
2. (pg. $105 \# 33$) Use induction to prove that

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{n}} \geqslant 1+\frac{n}{2} .
$$

Solution: (via induction on n)
First, we will show the base case, $P(0)$, is true.

$$
\frac{1}{2^{0}}=\frac{1}{1} \geqslant 1+\frac{0}{2}
$$

and $P(0)$ is true.

Now, assume $P(k)$ is true. That is, $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{k}} \geqslant 1+\frac{k}{2}$. We will show that $P(k+1)$ is true.

$$
\begin{aligned}
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{2^{k}}+\frac{1}{2^{k}+1}+\ldots+\frac{1}{2^{k}+2^{k}} & \geqslant 1+\frac{k}{2}+\frac{1}{2^{k}+1}+\ldots+\frac{1}{2^{k}+2^{k}}(\text { by } P(k)) \\
& \geqslant 1+\frac{k}{2}+\frac{1}{2^{k}+2^{k}}+\ldots+\frac{1}{2^{k}+2^{k}} \\
& =1+\frac{k}{2}+\frac{2^{k}}{2^{k}+2^{k}} \\
& =1+\frac{k}{2}+\frac{2^{k}}{2^{k+1}} \\
& =1+\frac{k}{2}+\frac{1}{2} \\
& =1+\frac{k+1}{2}
\end{aligned}
$$

Hence, by the Principle of Mathematical Induction, $P(n)$ is true for all $n \in \mathbb{Z}$ where $n \geqslant 0$.
3. (pg. $108 \# 63$) If $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$, prove that $f_{n}=\frac{a^{n}-b^{n}}{\sqrt{5}}$ for all $n \in \mathbb{N}$.

Solution: (via induction - v4)
The definition of f_{n} involves the recursion formula $f_{n}=f_{n-1}+f_{n-2}$. For this reason, we will individually verify $P(1), P(2)$, and $P(3)$.
Base case $-P(1)$ or f_{1} :

$$
\frac{a-b}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)}{\sqrt{5}}=\frac{\frac{2 \sqrt{5}}{2}}{\sqrt{5}}=1=f_{1} .
$$

$P(2)$ or f_{2} :

$$
\frac{a^{2}-b^{2}}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}}{\sqrt{5}}=\frac{\frac{4 \sqrt{5}}{4}}{\sqrt{5}}=1=f_{2}
$$

$P(3)$:

$$
\frac{a^{3}-b^{3}}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{3}-\left(\frac{1-\sqrt{5}}{2}\right)^{3}}{\sqrt{5}}=\frac{\frac{16 \sqrt{5}}{8}}{\sqrt{5}}=2=f_{3} .
$$

Now, assume for all $3 \leqslant t \leqslant k, P(t)$ is true. We will show that $P(k+1)$ is true.

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} \quad\left(\text { by the recursion definition of } f_{k+1}\right) \\
& =\frac{a^{k}-b^{k}}{\sqrt{5}}+\frac{a^{k-1}-b^{k-1}}{\sqrt{5}} \\
& =\frac{a^{k-1}(a+1)-b^{k-1}(b+1)}{\sqrt{5}} \\
& =\frac{a^{k-1}\left(a^{2}\right)-b^{k-1}\left(b^{2}\right)}{\sqrt{5}} \quad\left(\text { since } a+1=a^{2} \text { and } b+1=b^{2}\right) \\
& =\frac{a^{k+1}-b^{k+1}}{\sqrt{5}}
\end{aligned}
$$

So, by the Principle of Mathematical Induction, $P(n)$ is true for all $n \in \mathbb{N}$.

