Homework 7 (Due Tues, March 25)

Math 2710 – Spring 2014 Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

- 1. * Prove that the inequality $n^2 \ge n$ holds for every integer.
- 2. Prove that for every integer $n \ge 0$, the number $n^4 4n^2$ is divisible by 3.

Solution: (via induction) Base case - P(0):

$$0^4 - 4 \cdot 0^2 = 0 = 0 \cdot 3$$

is divisible by 3. Thus, P holds for n = 0.

Now, assume P(k). Then, for some $a \in \mathbb{Z}$, $k^4 - 4k^2 = 3 \cdot a$. We will show P(k+1) is true.

$$(k+1)^4 - 4(k+1)^2 = (k^4 + 4k^3 + 6k^2 + 4k + 1) - 4(k^2 + 2k + 1)$$
$$= k^4 - 4k^2 + 4k^3 + 6k^2 - 4k - 3$$
$$= 3 \cdot a - 3 + 4k^3 + 6k^2 - 4k$$

We will show by induction that $\forall k \ge 0, 3 \mid 4k^3 + 6k^2 - 4k$. Base case - $\hat{P}(0)$:

$$4 \cdot 0^3 + 6 \cdot 0^2 - 4 \cdot 0 = 0 = 3 \cdot 0$$

Now, assume $\hat{P}(i)$. Then, for some $b \in \mathbb{Z}$, $4i^3 + 6i^2 - 4i = 3 \cdot b$.

$$4(i+1)^3 + 6(i+1)^2 - 4(i+1) = 4(i^3 + 3i^2 + 3i + 1) + 6(i^2 + 2i + 1) - 4i - 4$$

= 4i^3 + 6i^2 - 4i + 12i^2 + 24i + 6
= 3 \cdot b + 3(4i^2 + 8i + 2)

which is divisible by 3. Hence, for all $k \ge 0, 3 | 4k^3 + 6k^2 - 4k$. Therefore, $3 | (k+1)^4 - 4(k+1)^2$ and P(k+1) is true. Hence, for every integer $n \ge 0$, the number $n^4 - 4n^2$ is divisible by 3.

Another proof without induction: We want to show that for every integer $n \ge 0$, the number $n^4 - 4n^2$ is divisible by 3. If $3 \mid n$, then $3 \mid n^4 - 4n^2$ and we're done. Suppose $3 \nmid n$. Then, n = 3p + 1 or n = 3p + 2 for some $p \in \mathbb{Z}$. If n = 3p + 1, then

$$n^{4} - 4n^{2} = n^{2}(n-2)(n+2)$$

= $(3p+1)^{2}(3p-1)(3p+3)$
= $3 \cdot (3p+1)^{2}(3p-1)(p+1)$

and $3 \mid n^4 - 4n^2$. Now, suppose n = 3p + 2. By the same argument,

$$n^{4} - 4n^{2} = n^{2}(n-2)(n+2)$$

= $(3p+1)^{2}(3p)(3p+4)$
= $3 \cdot (3p+1)^{2}(p)(3p+4)$

and $3 \mid n^4 - 4n^2$. Hence, for all $n \ge 0$, $n^4 - 4n^2$ is divisible by 3.

3. Prove that $2^n > n^3$ for every integer $n \ge 10$.

Solution: (via induction) Base case - P(10):

$$10^3 = 1000 < 1024 = 2^{10}$$

Now, assume P(k). That is, assume $2^k > k^3$. We will show that P(k+1) is true.

$$2^{k+1} = 2 \cdot 2^k$$

> 2 \cdot k^3 (by P(k))

We will show that $2k^3 > (k+1)^3$ which will prove that P(k+1) is true. Because we can rewrite $2k^3 > (k+1)^3$ in the following way

$$2k^{3} > (k+1)^{3}$$
$$2k^{3} > k^{3} + 3k^{2} + 3k + 1$$
$$k^{3} - 3k^{2} - 3k > 1$$
$$k(k^{2} - 3k - 3) > 1,$$

it suffices to show that $k(k^2-3k-3) > 1$. Since $k \ge 10$, it suffices to show that $k^2-3k-3 > 1$ for all $k \ge 10$.

$$k^{2} - 3k - 3 > 1$$

$$k^{2} - 3k - 4 > 0$$

$$(k - 4)(k + 1) > 0$$

For all $k \ge 10$, (k-4)(k+1) > 0, and thus, $2k^3 > (k+1)^3$. Hence, P(k+1) is true. Therefore, $2^n > n^3$ for every integer $n \ge 10$.

4. For each $i \in \mathbb{N}$, let $a_i = 3^{i-2}$. Evaluate

(a)
$$\sum_{i=1}^{5} a_i,$$

