
Homework 8 (Due Tues, Apr 1)

Math 2710 – Spring 2014

Professor Hohn

Using the proof techniques we have learned in class, prove each statement.

1. For functions whose domains are sets of real numbers, it is common practice to use a formula
to describe a function’s pairing rule with the understanding that the domain of the function
is the set of all real numbers for which the formula gives a unique real number unless further
restrictions are imposed. For example, the function f given by fpxq “

?
x´ 3 has domain

x P R | x ě 3. In each of the following, determine the domains of f and g, and then use the
definition of equal to show whether f and g are equal.

(a) fpxq “ 1, gpxq “
x´ 5

x´ 5

Solution: Df “ R and Dg “ R´ t5u. Thus, f ‰ g.

(b) fpxq “
?
x, gpxq “

a

|x|

Solution: Df “ tx P R | x ě 0u and Dg “ R. Thus, f ‰ g.

(c) fpxq “ |x|, gpxq “
?
x2

Solution: Df “ R and Dg “ R, and @x P R, fpxq “ gpxq. Thus, f “ g.

(d) fpxq “ x2 ´ x´ 6, gpxq “ px´ 4qpx` 3q ` 6

Solution: Df “ R and Dg “ R, and @x P R, fpxq “ gpxq. Thus, f “ g.

(e) fpxq “ x2, gpxq “

#

x2 if x is rational

0 if x is irrational

Solution: Df “ R and Dg “ R, but @x P R, fpxq ‰ gpxq (fpπq “ π2 and gpπq “ 0).
Thus, f ‰ g.

2. Suppose a function f : AÑ B is given. Define a relation „ on A as follows:

a1 „ a2 ðñ fpa1q “ fpa2q

Prove that „ is an equivalence relation on A.



Solution: „ is an equivalence relation if „ is reflexive, symmetric, and transitive.

(Reflexive) Let a P A. Since equality is reflexive, fpaq “ fpaq for all a P A, and hence
a „ a. Therefore, „ is reflexive.

(Symmetric) Let a, b P A. If a „ b, then fpaq “ fpbq. Since equality is symmetric,
fpbq “ fpaq and hence b „ a. Hence, „ is symmetric.

(Transitive) Let a, b, c P A. Suppose a „ b and b „ c. Then, fpaq “ fpbq and fpbq “ fpcq.
Since equality is transitive, this implies that fpaq “ fpcq and hence a „ c. Therefore, „ is
transitive.

Since „ is reflexive, symmetric, and transtive, „ is an equivalence relation.

3. * If A and B are sets, let BA denote the set of all functions from A to B.

(a) Determine the set t1, 2ut1,2u. That is, list it’s members explicitly.

(b) Show that if A,B,C are sets and A Ď B, then AC Ď BC .

(c) Show that the sets t1, 2ut1,2u and t1, 2ut1,2,3u are disjoint.

(d) Generalize part (c) by showing that if B ‰ C then AB XAC “ H.

(e) Show that if A is a nonempty set, then HA “ H.

(f) Show that if B is any set then BH “ tHu.

4. In each case, state without proof whether the given function is injective, surjective, and/or
bijective.

(a) f : NÑ N given by fpxq “ x3.

Solution: f is injective, but not surjective.

(b) g : t1, 2, 3u Ñ t´2, 5, 6u given by g “ tp1, 5q, p2,´2q, p3, 6qu.

Solution: g is bijective.

(c) h : t1, 2, 3u Ñ t´2, 5, 6u given by h “ tp3, 5q, p2,´2q, p1, 5qu.

Solution: h neither injective nor surjective.

5. Let S and T by sets with three elements and two elements, respectively. In each case, state
the answer and justify briefly.

(a) How many functions are there from S to T?

Solution: There are 8 functions from S to T . To see this, note that each of the three
elements in S has two “choices” in T to be mapped to. This gives 2ˆ 2ˆ 2 “ 8 total
possible “choices” of functions from S to T .

(b) How many injections are there from S to T?
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Solution: There are no injections from S to T . To justify this, let S “ ts1, s2, s3u
and T “ tt1, t2u. If we assume that f is an injection from S to T , then fps1q and
fps2q must be distinct elements in T , therefore t1, t2 P tfps1q, fps2qu. But since fps3q
must either be t1 or t2, then fps3q P tfps1q, fps2qu, contradicting the assumption that
f was a bijection (since this means that fps3q “ fps1q or fps3q “ fps2q). Therefore
no bijection exists.

(c) How many injections are there from T to S?

Solution: There are 6 injections from S to T . One way to see this is that the first
element in T has 3 “choices” of elements to choose from; once this choice is made, the
second element only has 2 remaining “choices” from which to choose, and therefore
we have 3ˆ 2 “ 6 injections. Alternatively, we can list them:

Let S “ ts1, s2, s3u and T “ tt1, t2u.

f1 “ tpt1, s1q, pt2, s2qu

f2 “ tpt1, s1q, pt2, s3qu

f3 “ tpt1, s2q, pt2, s1qu

f4 “ tpt1, s2q, pt2, s3qu

f5 “ tpt1, s3q, pt2, s1qu

f6 “ tpt1, s3q, pt2, s2qu

(d) How many surjections are there from S to T?

Solution: There are 6 surjections from S to T . To see this, suppose that s1 gets
mapped to t1. Then one or both of s2 and s3 needs to be mapped to t2 to ensure we
have a subjection. There are 3 ways for this to happen:

s2 ÞÑ t1 and s3 ÞÑ t2

s2 ÞÑ t2 and s3 ÞÑ t1

s2 ÞÑ t2 and s3 ÞÑ t2

By the same reasoning if s1 gets mapped to t2 then there are three possibilities. So,
since s1 goes to either t1 or t2 we have 3` 3 “ 6 total surjections.

(e) How many surjections are there from T to S?

Solution: There are no surjections from T to S. Since S has 3 elements, the only
way for a function f : tt1, t2u Ñ ts1, s2, s3u to be a surjection is if tfpt1q, fpt2qu has 3
elements, which is clearly impossible.

(f) Guess the answers to (a) and (b) if S has m elements and T has n elements.
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Solution: For a: each of the m elements of S has n “choices” to be mapped to in T ,
therefore a good (and correct!) guess is that there are

nˆ nˆ ¨ ¨ ¨ ˆ n
loooooooomoooooooon

m factors

“ nm

functions f : S Ñ T .

For b: Case n ă m: then there will be no injections by the same (pigeon hole principle)
argument used in b.
Case n ě m: Let’s reason as in part c. The first element in S will have n “choices” in
T , the second will then have the remaining n´ 1 elements in T to “choose” from, the
third will then have the remaining n´ 2 elements in T to “choose” from, ..., the mth
element will have the remaining n´m` 1 elements to choose from. So, a good (and
correct!) guess is

nˆ pn´ 1q ˆ pn´ 2q ˆ ¨ ¨ ¨ ˆ pn´m` 1q “
n!

pn´mq!

injections.

6. * A function f : AÑ B is a subset of AˆB and hence a subset of pAYBq ˆ pAYBq. By our
definition of relation, f is a relation on AYB. Therefore, f has an inverse relation

f´1 “ tpb, aq | pa, bq P fu .

(a) Write the inverses of

i. g : t1, 2, 3u Ñ t´2, 5, 6u given by g “ tp1, 5q, p2,´2q, p3, 6qu.

ii. h : t1, 2, 3u Ñ t´2, 5, 6u given by h “ tp3, 5q, p2,´2q, p1, 5qu.

(b) Show that if f is not injective, then f´1 is not a function.

(c) Show that if f is injective but not surjective, then f´1 is a function whose domain is a
proper subset of B.

7. Let a and b be real numbers. Consider a function f : RÑ R given by the formula fpxq “ ax`b.

(a) Under what conditions on a and b is f a bijection from R to R?

Solution: f is bijective if and only if a ‰ 0. To see this, if a “ 0, then for all x P R,
fpxq “ b and is therefore not injective. If a ‰ 0, then confirm that gpxq “ x´b

a is such
that f ˝ gpxq “ x and g ˝ fpxq “ x for every x P R. In other symbols, gpxq “ f´1pxq
is a function for all x P R, which by problem 6 implies that f is a bijection.

(b) Under what conditions on a and b is the restriction fæZ a bijection from Z to Z?

Solution: f is bijective if and only if a “ ˘1 and b P Z. To see this, note that
fp0q “ b and fp1q “ a ` b. This shows that b P fpZq and a ` b P fpZq. Therefore, if
fpZq Ď Z then b P Z and a` b P Z, but this also implies that pa` bq ´ b “ a P Z. On
the other hand, if a, b P Z, then for any x P Z, fpxq “ ax ` b P Z. What we have so
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far shown is that fpZq Ď Z if and only if a, b P Z. Now, suppose that a ‰ ˘1 then
there is no element x P Z such that fpxq “ b` 1 (nor b´ 1 for that matter). However,
if a “ ˘1, then for every x P Z, x´b

a P Z, and therefore gpxq “ x´b
a will be a function

from Z to Z, and as in the previous part, g “ f´1, proving that f is bijective.

(c) Under what conditions on a and b is the restriction fæN a bijection from N to N?

Solution: For f to be bijective, a “ 1 and b “ 0. It is clear that if a “ 1 and b “ 0
then fpxq “ x will give us a bijection. We now show that it is the only choice. From
the previous part, since we want fpNq Ď N, we will (at very least) need a, b P Z. If
a ă 0 then for large enough x P N, ax ` b ă 0, meaning that fpxq R N. Therefore,
a ě 0. If a “ 0, then fpxq “ b will not be injective. We conclude here that a ą 0;
that is, a P N. Note that fp1q “ a` b P N, therefore a` b` 1 P N; however, if a ą 1,
then there is no x P N such that fpxq “ a ` 1 ` b (indeed, if x P N and x ‰ 1 then
x “ 1`k for some k P N; hence fpxq “ a`ka` b ą a` 1` b since ka ě a ą 1), so for
fæN to have any chance of being a bijection, a “ 1. From here we can assume a “ 1.
If x, y P N and x ă y, then fpxq “ x ` b ă y ` b “ fpyq. Therefore, fp1q will be the
smallest element in fpNq, and hence, if f is going to be a bijection, fp1q “ 1, but this
forces b “ 0.

8. Define the 1-tuple pa1q “ ta1u. Define the 2-tuple pa1, a2q to be the ordered pair pa1, a2q. In gen-
eral, if the k-tuple pa1, a2, . . . , akq has been defined, define the pk`1q-tuple pa1, a2, . . . , ak, ak`1q
to be the ordered pair

´

pa1, . . . , akq, ak`1

¯

.

Prove by induction on n that this recursive definition of n-tuple retains the following essential
property:

pa1, . . . , anq “ pb1, . . . , bnq ðñ ai “ bi for each i, 1 ď i ď n .

Solution: Proof via induction on n:

P p1q: Suppose n “ 1. Then, pa1q “ pb1q if and only if a1 “ b1 is true. Since our reasoning
involves a recursive formula, we will check P p2q.

P p2q: Suppose n “ 2. pa1, a2q “ pb1, b2q is a sequence of length 2. By definition, this means
there is a function f : N2 Ñ A such that fp1q “ a1 and fp2q “ a2, and there is a function
g : N2 Ñ B such that gp1q “ b1 and gp2q “ b2. These sequences are equal if and only the
functions are equal at every ith coordinate. Thus, pa1, a2q “ pb1, b2q iff fpiq “ gpiq for all i,
1 ď i ď 2. So, pa1, a2q “ pb1, b2q iff ai “ bi for all i, 1 ď i ď 2.

Assume P pkq is true. That is, pa1, . . . , akq “ pb1, . . . , bkq iff ai “ bi for all 1 ď i ď k.

pa1, . . . , ak, ak`1q “ pb1, . . . , bk, bk`1q

ðñ
`

pa1, . . . , akq, ak`1
˘

“
`

pb1, . . . , bkq, bk`1
˘

ðñ pa1, . . . , akq “ pb1, . . . , bkq and ak`1 “ bk`1

By our hypothesis, ai “ bi for all i, 1 ď i ď k. Thus, pa1, . . . , ak, ak`1q “ pb1, . . . , bk, bk`1q
if and only if ai “ bi for all i, 1 ď i ď k ` 1, and P pk ` 1q is true.
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By the Principle of Mathematical Induction, the recursive definition of n-tuple retains the
essential property:

pa1, . . . , anq “ pb1, . . . , bnq ðñ ai “ bi for each i, 1 ď i ď n .

9. Information transmitted electronically is usually encoded in the form of n-tuples of 0s and 1s,
often called n-bit strings. For brevity, commas and parentheses are omitted; thus, 01101011
is an 8-bit string. A code of length n is a set of such strings, and the members of code are
called codewords. To aid in the detection and correction of errors, it is useful to have different
codewords differ in more that one coordinate. Define the distance between two n-bit strings
to be the number of coordinates in which they differ. More formally, let Zn

2 denote the set of
n-bit strings, and define a function d : Zn

2 ˆ Zn
2 Ñ Z by

dpa1a2 . . . an, b1b2 . . . bnq “
n
ÿ

i“1

|ai ´ bi|

where ai, bi P t0, 1u for each i. For example, dp1101, 1001q “ 1. Prove that the function d has
the following properties:

(a) dps1, s2q ě 0

Solution: Let s1 “ a1a2a3 . . . an and s2 “ b1b2b3 . . . bn. Then,

dps1, s2q “ dpa1a2a3 . . . an, b1b2b3 . . . bnq

“

n
ÿ

i“1

|ai ´ bi|

“ |a1 ´ b1|` |a2 ´ b2|` . . .` |an ´ bn|
ě 0 (since absolute value of any number is greater than 0

(b) dps1, s2q “ 0 ðñ s1 “ s2

Solution: Let s1 “ a1a2a3 . . . an and s2 “ b1b2b3 . . . bn. Then,

dps1, s2q “ dpa1a2a3 . . . an, b1b2b3 . . . bnq

“

n
ÿ

i“1

|ai ´ bi|

“ |a1 ´ b1|` |a2 ´ b2|` . . .` |an ´ bn|

Thus,

dps1, s2q “ 0 ðñ |a1 ´ b1|` |a2 ´ b2|` . . .` |an ´ bn| “ 0

ðñ |ai ´ bi| “ 0 for all i, 1 ď i ď n

ðñ ai “ bi for all i, 1 ď i ď n

ðñ s1 “ s2
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(c) dps1, s2q “ dps2, s1q

Solution: Let s1 “ a1a2a3 . . . an and s2 “ b1b2b3 . . . bn. Then,

dps1, s2q “ dpa1a2a3 . . . an, b1b2b3 . . . bnq

“

n
ÿ

i“1

|ai ´ bi|

“ |a1 ´ b1|` |a2 ´ b2|` . . .` |an ´ bn|
“ |b1 ´ a1|` |b2 ´ a2|` . . .` |bn ´ an|

“

n
ÿ

i“1

|bi ´ ai|

“ dpb1b2b3 . . . bn, a1a2a3 . . . anq

“ dps2, s1q

(d) For all s1, s2, s3 P Zn
2 ,

dps1, s3q ď dps1, s2q ` dps2, s3q pthe triangle inequalityq

Suggestion: Use induction on n, starting with n “ 1.

Solution: Proof via induction on n.

Let s1 “ a1a2 . . . an, s2 “ b1b2b3 . . . bn, and s3 “ c1c2c3 . . . cn.

P p1q : Suppose n “ 1. So, s1 “ a1, s2 “ b2, and s3 “ c3, and

dps1, s3q “ |a1 ´ c1|
“ |a1 ´ b1 ` b1 ´ c1|
“ |pa1 ´ b1q ` pb1 ´ c1q|
ď |a1 ´ b1|` |b1 ` c1|
“ dps1, s2q ` dps2, s3q

And, P p1q is true.

Now, assume P pkq is true. We will show that P pk ` 1q is true.

Let s1 “ a1a2...akak`1, s2 “ b1b2...bkbk`1, and s3 “ c1c2...ckck`1. Also, let s̃1 “
a1a2...ak, s̃2 “ b1b2...bk, and s̃3 “ c1c2...ck. By the inductive hypothesis dps̃1, s̃3q ď
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dps̃1, s̃2q ` dps̃2, s̃3q. From here

dps1, s3q “
k`1
ÿ

i“1

|ai ´ ci|

“

k
ÿ

i“1

|ai ´ ci|` |ak`1 ´ ck`1|

“ dps̃1, s̃3q ` |ak`1 ´ ck`1|
ď dps̃1, s̃2q ` dps̃2, s̃3q ` |ak`1 ´ ck`1|

“

k
ÿ

i“1

p|ai ´ bi|` |bi ´ ci|q ` |pak`1 ´ bk`1q ` pbk`1 ´ ck`1q|

ď

k
ÿ

i“1

p|ai ´ bi|` |bi ´ ci|q ` p|ak`1 ´ bk`1|` |bk`1 ´ ck`1|q

“

k`1
ÿ

i“1

p|ai ´ bi|` |bi ´ ci|q

“ dps1, s2q ` dps2, s3q

Thus, P pk ` 1q is true, and by the Principle of Mathematical Induction,

dps1, s3q ď dps1, s2q ` dps2, s3q

is true for all n.

10. * Suppose f : N Ñ A and g : N Ñ B are surjections. Prove that there is a surjection
h : NÑ AYB. [Suggestion: Consider the list fp1q, gp1q, fp2q, gp2q, . . .]
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