Homework 9 (Due Tues, Apr 8)

Math 2710 - Spring 2014

Professor Hohn
Using the proof techniques we have learned in class, prove each statement.

1. * Let g, r, s be functions, and let f be a bijective function. Prove the following:
(a) $f \circ g=f \circ h \Longrightarrow g=h \quad$ (left cancellation),
(b) $r \circ f=s \circ f \Longrightarrow r=s \quad$ (right cancellation).
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Prove that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(Hint: Use the following theorem appropriately that we covered in class: If $f: A \rightarrow B$ and $g: B \rightarrow A$, then the following are equivalent:
(a) f is a bijection and $g=f^{-1}$
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.
3. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(a) Show that if $g \circ f$ is injection, then f is injective.
(b) Show that is $g \circ f$ is surjective, then g is surjective.
4. Suppose that A and B are non-empty sets. Let $f: A \rightarrow B$. Given any subset $V \subseteq B$, the inverse image of V with respect to f is the set

$$
f^{-1}(V)=\{x \in A \mid f(x) \in V\} \subseteq A .
$$

The notation f^{-1} in this context does not imply that f is invertible, but it is a convenient and widely used notation for the inverse image of V; this definition makes sense for any function.
(a) ${ }^{*}$ Let $V \subseteq B$ and $U=f^{-1}(V)$. Prove that $f(U)=V$ if and only if $V \subseteq f(A)$.
(b) If $V_{1}, V_{2} \subseteq B$, prove that

$$
f^{-1}\left(V_{1} \cup V_{2}\right)=f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right) .
$$

(c) If $V_{1}, V_{2} \subseteq B$, prove that

$$
f^{-1}\left(V_{1} \cap V_{2}\right)=f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right) .
$$

(d) If $V \subseteq B$, prove that

$$
f^{-1}\left(V^{c}\right)=f^{-1}(V)^{c} .
$$

Note that $V^{c}=B-V$ (i.e. V^{c} is the compliment of V in B) and $f^{-1}(V)^{c}=A-f^{-1}(V)$ (i.e. $f^{-1}(V)^{c}$ is the complement of $f^{-1}(V)$ in A).
(e) If $f: A \rightarrow B$ is a bijection and $V \subseteq B$, prove that

$$
f^{-1}(V)=\left\{f^{-1}(y) \mid y \in V\right\} .
$$

Here, on the left-hand side, $f^{-1}(V)$ means the inverse image of V with respect to f; whereas, on the right-hand side $f^{-1}(y)$ means the inverse of f (which exists since we've assumed f was bijective).

