Homework 9 (Due Tues, Apr 8)

Math 2710 - Spring 2014
Professor Hohn
Using the proof techniques we have learned in class, prove each statement.

1. * Let g, r, s be functions, and let f be a bijective function. Prove the following:
(a) $f \circ g=f \circ h \Longrightarrow g=h \quad$ (left cancellation),
(b) $r \circ f=s \circ f \Longrightarrow r=s \quad$ (right cancellation).
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Prove that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Hint: Use the following theorem appropriately that we covered in class: If $f: A \rightarrow B$ and $g: B \rightarrow A$, then the following are equivalent:
(a) f is a bijection and $g=f^{-1}$
(b) $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Solution: By the theorem above, if $\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=i_{A}$ and $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=i_{A}$, then $g \circ f$ is a bijection and $f^{-1} \circ g^{-1}=(g \circ f)^{-1}$. So, we will show that $\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=i_{A}$ and $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=i_{A}$.

$$
\begin{aligned}
\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f) & =f^{-1} \circ g^{-1} \circ g \circ f \\
& =f^{-1} \circ i_{B} \circ f \quad \text { since } g \text { is bijective, see theorem above } \\
& =f^{-1} \circ f \\
& =i_{A} \quad \text { since } f \text { is bijective, see theorem above. }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right) & =g \circ f \circ f^{-1} \circ g \\
& =g^{-1} \circ i_{B} \circ g \quad \text { since } f \text { is bijective, see theorem above } \\
& =g^{-1} \circ g \\
& =i_{A} \quad \text { since } g \text { is bijective, see theorem above. }
\end{aligned}
$$

Hence, since $\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=i_{A}$ and $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=i_{A}$, by the theorem above, $f^{-1} \circ g^{-1}=(g \circ f)^{-1}$.
3. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(a) Show that if $g \circ f$ is injection, then f is injective.

Solution: Suppose $g \circ f$ is 1-1. That is, for $a_{1}, a_{2} \in A$, if $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, then $a_{1}=a_{2}$. Now, suppose $a_{1}, a_{2} \in A$ and that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then, by composing on the left with $g, g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. Since g is 1-1, $a_{1}=a_{2}$. Hence, f is injective.
(b) Show that if $g \circ f$ is surjective, then g is surjective.

Solution: Suppose $g \circ f$ is onto. That is, if $c \in C$, then there exists an $a \in A$ such that $g(f(a))=c$. We want to show that g is onto. Let $c \in C$. We want to find an element in B such that $g(b)=c$. We know that $f(a) \in B$ and $g(f(a))=c$. So, the element in the domain of g that maps to c is $f(a) \in B$. Thus, g is onto.
4. Suppose that A and B are non-empty sets. Let $f: A \rightarrow B$. Given any subset $V \subseteq B$, the inverse image of V with respect to f is the set

$$
f^{-1}(V)=\{x \in A \mid f(x) \in V\} \subseteq A
$$

The notation f^{-1} in this context does not imply that f is invertible, but it is a convenient and widely used notation for the inverse image of V; this definition makes sense for any function.
(a) * Let $V \subseteq B$ and $U=f^{-1}(V)$. Prove that $f(U)=V$ if and only if $V \subseteq f(A)$.

Solution: (\Longrightarrow) Notice that if $V=\varnothing, V \subseteq f(A)$, and we're done. Now, assume $f(U)=V$, and let $v \in V$. Then, $v=f(u)$ for some $u \in U$. Since $U=f^{-1}(V) \subseteq A$, $v=f(u)$ for some $u \in A$. Hence, $v \in f(A)$. Thus, $V \subseteq f(A)$.
(\Longleftarrow) Assume $V \subseteq f(A)$. Let $y \in f(U)$. Then,

$$
\begin{aligned}
y \in f(U) & \Longleftrightarrow y=f(u) \text { for some } u \in U \\
& \Longleftrightarrow y=f(u), u \in f^{-1}(V) \\
& \Longleftrightarrow y=f(u) \text { for } u \in A \text { and } f(u) \in V \\
& \Longleftrightarrow y \in V .
\end{aligned}
$$

(b) If $V_{1}, V_{2} \subseteq B$, prove that

$$
f^{-1}\left(V_{1} \cup V_{2}\right)=f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right) .
$$

Solution: Let $V_{1}, V_{2} \subseteq B$. Then,

$$
\begin{aligned}
x \in f^{-1}\left(V_{1} \cup V_{2}\right) & \Longleftrightarrow x \in A \text { and } f(x) \in V_{1} \cup V_{2} \\
& \Longleftrightarrow x \in A \text { and }\left(f(x) \in V_{1} \text { or } f(x) \in V_{2}\right) \\
& \Longleftrightarrow\left(x \in A \text { and } f(x) \in V_{1}\right) \text { or }\left(x \in A \text { and } f(x) \in V_{2}\right) \\
& \Longleftrightarrow\left(x \in f^{-1}\left(V_{1}\right)\right) \text { or }\left(x \in f^{-1}\left(V_{2}\right)\right) \\
& \Longleftrightarrow x \in f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right) .
\end{aligned}
$$

(c) If $V_{1}, V_{2} \subseteq B$, prove that

$$
f^{-1}\left(V_{1} \cap V_{2}\right)=f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right) .
$$

Solution: Let $V_{1}, V_{2} \subseteq B$. Then,

$$
\begin{aligned}
x \in f^{-1}\left(V_{1} \cap V_{2}\right) & \Longleftrightarrow x \in A \text { and } f(x) \in V_{1} \cap V_{2} \\
& \Longleftrightarrow x \in A \text { and }\left(f(x) \in V_{1} \text { and } f(x) \in V_{2}\right) \\
& \Longleftrightarrow\left(x \in A \text { and } f(x) \in V_{1}\right) \text { and }\left(x \in A \text { and } f(x) \in V_{2}\right) \\
& \Longleftrightarrow\left(x \in f^{-1}\left(V_{1}\right)\right) \text { and }\left(x \in f^{-1}\left(V_{2}\right)\right) \\
& \Longleftrightarrow x \in f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right) .
\end{aligned}
$$

(d) If $V \subseteq B$, prove that

$$
f^{-1}\left(V^{c}\right)=f^{-1}(V)^{c}
$$

Note that $V^{c}=B-V$ (i.e. V^{c} is the compliment of V in B) and $f^{-1}(V)^{c}=A-f^{-1}(V)$ (i.e. $f^{-1}(V)^{c}$ is the complement of $f^{-1}(V)$ in A).

Solution: Let $V \subseteq B$. Then,

$$
\begin{aligned}
x \in f^{-1}\left(V^{c}\right) & \Longleftrightarrow x \in A \text { and } f(x) \in V^{c} \\
& \Longleftrightarrow x \in A \text { and } f(x) \in B-V \\
& \Longleftrightarrow x \in A \text { and }(f(x) \in B \text { and } f(x) \notin V) \\
& \Longleftrightarrow(x \in A \text { and } f(x) \notin V) \text { and } f(x) \in B \\
& \Longleftrightarrow x \in f^{-1}(V)^{c} .
\end{aligned}
$$

(e) If $f: A \rightarrow B$ is a bijection and $V \subseteq B$, prove that

$$
f^{-1}(V)=\left\{f^{-1}(y) \mid y \in V\right\}
$$

Here, on the left-hand side, $f^{-1}(V)$ means the inverse image of V with respect to f; whereas, on the right-hand side $f^{-1}(y)$ means the inverse of f (which exists since we've assumed f was bijective).

Solution: Suppose f is bijective and $V \subseteq B$. Thus, f has an inverse function f^{-1} and we can say that an element $x \in A$ can be written as $x=f^{-1}(y)$ for some $y \in B$. Notice that since f is bijective, we also have $f(A)=B$.

$$
\begin{aligned}
x \in f^{-1}(V) & \Longleftrightarrow x \in A \text { and } f(x) \in V \\
& \Longleftrightarrow f^{-1}(y) \in A \text { and } f\left(f^{-1}(y)\right) \in V \\
& \Longleftrightarrow f^{-1}(y) \in A \text { and } y \in V .
\end{aligned}
$$

