Score: _____

Math 2710 -Spring 2014

Quiz $4 - 10 \min$

Name: _____

Answer each of the following questions. You must show your work to receive full credit!

1. Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1.

Solution: (\implies) Suppose the gcd(a, c) = gcd(b, c) = 1. Then, $\exists p, q \in \mathbb{Z}$ such that bp + cq = 1. Multiplying both sides by a, we have $ab \cdot p + c \cdot aq = a$. By the Linear Diophantine Theorem, gcd(ab, c) | a. By the Euclidean Algorithm, $\exists x, y \in \mathbb{Z}$ such that ax + cy = 1. Since gcd(ab, c) | a and gcd(ab, c) | c, gcd(ab, c) | (ax + cy) and gcd(ab, c) | 1. Hence, gcd(ab, c) = 1. (\iff) On the other hand, if gcd(ab, c) = 1, then $\exists x, y \in \mathbb{Z}$ such that $ab \cdot x + c \cdot y = 1$. Then, a(bx) + c(y) = 1 and gcd(a, c) = 1. In addition, b(ax) + c(y) = 1 and gcd(b, c) = 1. Hence, gcd(a, c) = gcd(b, c) = 1.