Score: \qquad

Math 2710 - Spring 2014 Name: \qquad
Quiz 4-10 min

Answer each of the following questions. You must show your work to receive full credit!

1. Prove that $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$ if and only if $\operatorname{gcd}(a b, c)=1$.

Solution: (\Longrightarrow) Suppose the $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$. Then, $\exists p, q \in \mathbb{Z}$ such that $b p+c q=1$. Multiplying both sides by a, we have $a b \cdot p+c \cdot a q=a$. By the Linear Diophantine Theorem, $\operatorname{gcd}(a b, c) \mid a$. By the Euclidean Algorithm, $\exists x, y \in \mathbb{Z}$ such that $a x+c y=1$. Since $\operatorname{gcd}(a b, c) \mid a$ and $\operatorname{gcd}(a b, c)|c, \operatorname{gcd}(a b, c)|(a x+c y)$ and $\operatorname{gcd}(a b, c) \mid 1$. Hence, $\operatorname{gcd}(a b, c)=1$.
(\Longleftarrow) On the other hand, if $\operatorname{gcd}(a b, c)=1$, then $\exists x, y \in \mathbb{Z}$ such that $a b \cdot x+c \cdot y=1$. Then, $a(b x)+c(y)=1$ and $\operatorname{gcd}(a, c)=1$. In addition, $b(a x)+c(y)=1$ and $\operatorname{gcd}(b, c)=1$. Hence, $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.

