
PRACTICE PROBLEMS FOR EXAM 2

Math 3160Q – Fall 2015
Professor Hohn

Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a
chance of being on the exam. For more practice, I suggest you work through the review questions
at the end of each chapter as well.

1. Let X be a continuous random variable with density function

fX(t) =

{
a t+ b −1 < t < 1

0 otherwise

(a) Find b.

Solution: We know that
∫∞
−∞ fX(t) dt = 1. Therefore

1 =

∫ ∞
−∞

fX(t) dt =

∫ 1

−1
(at+ b) dt = 2b.

Solving for b, we find b = 1/2.

(b) Find E(X). This may be in terms of a.

Solution: With b = 1/2,

E[X] =

∫ 1

−1
t(at+ 1/2) dt =

[1

3
at3 +

1

4
t2
]1
−1

=
2

3
a.

(c) Find Var(X). This may be in terms of a.

Solution: We know that Var(X) = E[X2]−E[X]2. We found E[X] in the previous part,
so it remains to find E[X2]. We have

E[X2] =

∫ 1

−1
t2(at+ 1/2) dt =

[1

4
at4 +

1

6
t3
]1
−1

=
1

3

Therefore,

Var(X) =
1

3
−
(2

3
a
)2

=
1

3
− 4

9
a2 =

1

3

(
1− 4

3
a
)
.

(d) Give a brief (but reasonable) explanation why any value of a where a > b would not be
possible.

Solution: Notice that as the value of t approaches −1 from the right, the density fX(t)
approaches the value −a+ b. Since the density must always be non-negative, it must be
that −a+ b ≥ 0, which rearranges to b ≥ a, showing that a > b is not allowed (otherwise
the density will output negative values).
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2. Suppose X = N(µ, σ2). In terms of the distribution Φ(x) = P (N(0, 1) ≤ x) of the standard
normal random variable, find the probability that X is less than 1

2σ+µ, or greater than 3
2σ+µ.

That is, find P
(
(X < 1

2σ + µ) ∪ (X > 3
2σ + µ)

)
.

Solution: If A is the event that X < 1
2σ + µ and B is the event X > 3

2σ + µ, then we want
P (A ∪B). Since A and B are mutually exclusive (disjoint), we have

P (A ∪B) = P (A) + P (B) = P (X <
1

2
σ + µ) + P (X >

3

2
σ + µ)

Using that X
d
= σZ + µ where Z

d
= N(0, 1),

P (X <
1

2
σ + µ) = P (σZ + µ <

1

2
σ + µ) = P (Z <

1

2
) = Φ(1/2)

P (X >
3

2
σ + µ) = P (σZ + µ >

3

2
σ + µ) = P (Z >

3

2
) = 1− Φ(3/2)

So, P (A ∪B) = Φ(1/2) + 1− Φ(3/2).

3. Suppose that an experiment has two outcomes 0 or 1 (such as flipping a coin). Suppose that
you run n independent experiments and for the ith experiment you let the random variable Xi

tell you the outcome for 1 ≤ i ≤ n. Then we can assume that for each i, that Xi = Ber(p) with
p = P (Xi = 1) (where we will assume for this problem that p is the same for each i). Then,

let X =
n∑
i=1

Xi.

(a) What is the state space SX of X?

Solution: If we add together n numbers, each of which are either 0 or 1, the possible
outcomes are 0, 1, 2, ..., n. So the state space SX is SX = {0, 1, 2, ..., n}.

(b) What is E[X]?

Solution: Since X =
∑n

i=1Xi, we have

E[X] =
n∑
i=1

E[Xi].

Since Xi
d
= Ber(p) for each i, E[Xi] = p. So

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

p = np.

We could have also realized this since if you consider flipping a coin n times where you
assign 1 if it lands heads and 0 if it lands tails, then X counts the number of heads landed

in those n flips. So X
d
= Bin(n, p), so E[X] = np, as we discovered before.

4. Suppose that the time between customer arrivals in a store is given by an exponential random

variable X
d
= Exp(λ), such that the average time between arrivals is 2 minutes. Suppose you
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walk past the store and notice it’s empty. What is the probability from the time you walk past
the store, the store remains empty for more than 5 minutes?

Solution: We know that E[X] = 1
λ since X

d
= Exp(λ). We are given E[X] = 2 (min), so

λ = 1/2 (min−1). Suppose that we walk past the store at time t0 (in minutes) and notice it is
empty, the problem asks us to find P (X > t0+5 | X > t0). However, since X is an exponential
random variable, the memoryless property tells us that P (X > t0 + 5 | X > t0) = P (X > 5).
Now,

P (X > 5) = e−λ5 = e−5/2.

5. Let X and Y be random variables with distributions given by,

FX(x) =


0 x < 0

3x 0 ≤ x < 1/3

1 x ≥ 1/3

FY (y) =

{
0 x < 0

1− 1
2e
−2x x ≥ 0

(a) Find P (X ≤ 1/4), P (Y < 0), and P (Y ≤ 0).

Solution: We have

P (X ≤ 1/4) = FX(1/4) = 3(1/4) = 3/4

and
P (Y ≤ 0) = FY (0) = 1/2.

Also
P (Y < 0) = P (Y ≤ 0)− P (Y = 0) = FY (0)− P (Y = 0)

and since there is a jump gap of 1/2 at Y = 0, we have P (Y = 0) = 1/2. Now,

P (Y < 0) = FY (0)− P (Y = 0) = 1/2− 1/2 = 0.

(b) Find E[X] and Var(X).

Solution: Note that FX is continuous (no jumps) and that we can find a density fX

fX(t) =
d

dt
FX(t) =

{
3 0 ≤ t < 1/3

0 otherwise

So, X is, in fact, a uniform random variable X
d
= Unif(0, 1/3). Therefore,

E[X] =
0 + 1/3

2
= 1/6

and

Var(X) =
(1/3− 0)2

12
= 1/108.
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(c) Find E[Y ].

Solution: Because of the jump in the graph of FY (t) at the value t = 0 (i.e., FY (0+)−
FY (0−) = 1/2) we see that Y is not continuous. However, since FY is not a step function,
Y is not a discrete random variable either. We are not out of luck though! We have

E[Y ] =

∫ ∞
0

(1− FY (t)) dt−
∫ 0

−∞
FY (t) dt =

1

2

∫ ∞
0

e−2t dt−
∫ 0

−∞
0 dt

=
1

2

∫ ∞
0

e−2t dt =
1

4
.

6. Let X be a continuous random variable with density given by,

fX(x) =

{
kex 0 < x < ln(2)

0 otherwise

(a) Find k.

Solution: Integrating over the density,∫ ∞
−∞

fX(t) dt = k

∫ ln(2)

0
et dt = ket

∣∣ln(2)
0

= k(2− 1) = k.

We also know that
∫∞
−∞ fX(t) dt = 1, so k = 1.

(b) Let Y = eX . Find the density fY (y) of Y .

Solution: Putting the CDF of Y into terms of the CDF of X, we have

FY (t) = P (Y ≤ t) = P (eX ≤ t) = P (X ≤ ln(t)) = FX(ln(t)).

Therefore,

fY (t) =
d

dt
FY (t) =

d

dt
FX(ln(t)) =

1

t
fX(ln(t)).

Note that

fX(ln(t)) =

{
eln(t) 0 < ln(t) < ln(2)

0 otherwise
=

{
t 1 < t < 2

0 otherwise

and so

fY (t) =
1

t
fX(ln(t)) =

{
1 1 < t < 2

0 otherwise

(c) What type of continuous random variable is Y ?

Solution: Since fY (t) is constant on the interval (1, 2) and 0 elsewhere, we have at

Y
d
= Unif(1, 2).

7. Your professor (reluctantly) runs on a treadmill at the UConn gym during the winter. Suppose
the time she waits in line for a treadmill is exponentially distributed, and on average, the time
she waits in line for a treadmill is 7 minutes.
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(a) What is the probability that the next time your professor waits for a treadmill, she will
wait in line for at least 10 minutes?

Solution: Let X be the random variable which represents the amount of time your
professor waits for a treadmill during her next trip to the gym. Then by assumption,
X is an exponential random variable with parameter λ = 1/7 in units min−1 (since
λ = 1/E[X] and E[X] = 7 minutes by assumption). We have

P (X ≥ 10) =
1

7

∫ ∞
10

e−t/7 dt = e−10/7.

(b) You notice your professor in the gym waiting in line for the treadmill. You do not know
how long she has already been waiting in line. If you can, calculate the probability that
she will get a treadmill in the next 5 minutes; if you can not calculate this probability,
explain why not.

Solution: Suppose that your professor has already been waiting in line for some time
t0 > 0 when you see her. Once again, let X represent the amount of time the professor
will wait in line. We want to find P (X ≤ t0 + 5 |X > t0), which by the memoryless
property of the exponential random variable is equal to P (X ≤ 5) = 1− e−5/7.

8. You are choosing between two venues to order food from which will be delivered to your house.
With probability 1/3 you will choose venue A, and with probability 2/3 you will choose venue
B. If you order from venue A, 15 minutes after making the call the remaining time it takes the
food to arrive is exponentially distributed with average 10 minutes. If you order from venue
B, 10 minutes after making the call, the time it takes the food will arrive is exponentially
distributed with an average of 12 minutes. Given that you have already waited 25 minutes
after calling, and the food has not arrived, what is the probability that you ordered from venue
A?

Solution: Let A be the event you ordered from venue A and B be the event you ordered from

venue B. Let X
d
= Exp(1/10) and Y

d
= Exp(1/12). Let T be the random variable telling us the

time it takes your food to arrive after ordering. What the problem tells us is that for any time
t (greater than 15min), we have P (T > t | A) = P (X+ 15 > t) = P (X > t−15) = e−(t−15)/10

and P (T > t | B) = P (Y + 10 > t) = P (Y > t − 10) = e−(t−10)/12. We are asked to find
P (A | T > 25). An application of Bayes’ formula gives

P (A | T > 25) =
P (T > 25 | A)P (A)

P (T > 25 | A)P (A) + P (T > 25 | B)P (B)

=
e−(25−15)/10(1/3)

e−(25−15)/10(1/3) + e−(25−10)/12(2/3)
=

e−1

e−1 + 2e−5/4
=

1

1 + 2e−1/4

9. Distracted while listening to the latest Beyoncé album, General Xavier accidentally knocks over
a large jar filled with 10,000 fair coins at Fort Knox. All the coins fall out completely randomly.

Let X count the number of heads that appear when the coins fall. Then X
d
= Bin(10 000, 12).

(a) (3 points) What is P (X > 5100)? You do not need to evaluate the sum you write down.
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Solution: Since X
d
= Bin(10 000, 1/2),

P (X > 5100) =

10,000∑
k=5101

(
10000

k

)(
1

2

)k(1

2

)10000−k
=

10000∑
k=5101

(
10000

k

)(
1

2

)10000

(b) (5 points) Approximate P (X > 5100) using a normal distribution. Leave you answer in
terms of Φ(x) where Φ(x) = P (N(0, 1) ≤ x).

Solution: Let Z
d
= N(0, 1). Here X

d
= Bin(n, p) with n = 10000 and p = 1/2. So

µ = np = 5000 and σ =
√
np(1− p) =

√
2500 = 50. We have X

d
≈ σZ + µ, meaning

P (X > 5100) ≈ P
(
σZ + µ > 5100

)
= P (Z >

5100− µ
σ

)

= P (Z >
5100− 5000

50
) = P (Z > 2)

= 1− P (Z ≤ 2) = 1− Φ(2)

(c) (5 points) Approximate P (X > 5100) using a Poisson distribution. Leaving an infinite
sum here is OK.

Solution: Using the Poisson approximation, we have X ≈ Pois(np) = Pois(5000).
Therefore,

P (X > 5100) = 1− P (X ≤ 5100) = 1−
5100∑
k=1

5000k

k!
e−5000

Where we chose to write this as a finite sum.

Note: Although n is large, p is “fixed” regardless of n and np 6� n, so a Poisson ap-
proximation should not be what our instincts tell us to use. Rather, with n large and
np(1− p) reasonably large relative to n, the normal approximation in the previous part
is likely a much better approximation, much easier to calculate by hand, and should be
what our instincts suggest.

10. 48000 fair dice are rolled independently. Let X count the number of sixes that appear.

(a) What type of random variable is X?

Solution: The state space of X will be SX = {0, 1, 2, ..., 48000} since these are all the
possible times a 6 appears when rolling 48000 dice. Supposing that each of the rolls of the

dice are independent, then for any k ∈ SX , we have P (X = k) =
(
48000
k

)(
1
6

)k(
5
6

)48000−k
.

This shows that X = Bin(48000, 1/6).

(b) Write the expression for the probability that between 7500 and 8500 sixes show. That is
P (7500 ≤ X ≤ 8500).

Solution: Since X = Bin(48000, 1/6),

P (7500 ≤ X ≤ 8500) =
8500∑

k=7500

(
48000

k

)(1

6

)k(5

6

)48000−k
.
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(c) The sum you wrote in part b) is ridiculous to evaluate. Instead, approximate the value by
a normal distribution and evaluate in terms of the distribution Φ(x) = P (N(0, 1) ≤ x) of
a standard normal random variable.

Solution: Let µ = E[X] = np = 48000(1/6) = 8000 and σ =
√

Var(X) =
√
np(1− p) =√

48000(1/6)(5/6) =
√

20000/3. Using the normal approximation, we have X
D
≈ σZ +µ

where Z = N(0, 1). This means,

P (7500 ≤ X ≤ 8500) ≈ P (7500 ≤ σZ + µ ≤ 8500)

= P
(7500− µ ≤ Z ≤ 8500− µ

σ

)
= P

( −500√
20000/3

≤ Z ≤ 500√
20000/3

)
= Φ

( 500√
20000/3

)
− Φ

(
− 500√

20000/3

)
= 2Φ

( 500√
20000/3

)
− 1

where the very last equality used the symmetry argument Φ(−a) = 1− Φ(a).

(d) Why do you think a normal distribution is a good choice for approximation?

Solution: Notice that n is reasonably large and np(1− p) = 20000/3 is also quite large
relative to n. With these considerations, the normal approximation should be fairly good.
Moreover, the large sum in the Poisson approximation and that np 6� n suggest that the
Poisson approximation is likely not the approximation we want to use!

11. Suppose that on average 2 people in a major city die each year from alien attack. Suppose that
each attack is random and independent.

(a) If X is the number of deaths from alien attack within the next year from a randomly
selected major city, what type of random variable is X?

Solution: Suppose that n is the size of the population of the major city and p = 2/n is
the probability that a randomly selected person drawn from that city is killed by alien
attack. The total possible outcomes of X, i.e. the state space of X, is SX = {0, 1, 2, ..., n}
and P (X = k) =

(
n
k

)
pk(1− p)n−k. This shows that X

d
= Bin(n, p).

(b) Use the Poisson approximation to approximate the probability that the next major city
you visit will have at least 3 deaths due to alien attack?

Solution: The Poisson approximation says X
d
≈ Pois(np) = Pois(2) (since p = 2/n).

We are looking for P (X ≥ 3). From here,

P (X ≥ 3) ≈ P (Pois(2) ≥ 3) = 1− P (Pois(2) < 3)

= 1−
2∑

k=0

2k

k!
e−2 = 1−

(
1 + 2 +

22

2

)
e−2 = 1− 5e−2.
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(c) Why do you think a Poisson approximation is used instead of a normal approximation?

Solution: In this scenario, n is quite large compared to np (remember np = 2 while
n is the population for an entire major city!), so the Poisson approximation seems like
a good fit. Moreover, np = 2 stays fixed and small while n is quite large and hence
np(1 − p) < np � n appears quite small with respect to n, which makes the normal
approximation not as appealing.

12. Consider the following graph of the distribution FX(t) of X

defined by

FX(t) =


0 t < 0

.3 0 ≤ t < 1

.8 1 ≤ t < 3

1 t ≥ 3

(a) Is the random variable X discrete, continuous, or neither?

Solution: We see that the CDF is a step function, which tells us that X is a discrete
random variable.

(b) What is the state space SX of X?

Solution: The jumps in the CDF occur at 0, 1, and 3. Therefore SX = {0, 1, 3}.

(c) What is the expected value E[X]?

Solution: By considering the size of the gaps at each jump, we have that P (X = 0) =
.3− 0 = .3, P (X = 1) = .8− .3 = .5, and P (X = 3) = 1− .8 = .2. From here

E[X] = 0 · P (X = 0) + 1 · P (X = 1) + 3 · P (X = 3) = .5 + 3(.2) = 1.1.

13. You have a fair coin, and you want to take your professor’s money. You ask the professor to
play a gambling game with you. The gambling game is designed as follows: You charge the
professor $C to play. You then flip the coin twice and record the number of heads that show.
If 0 heads show, you pay the professor $5. If exactly 1 head shows, you pay the professor $2.
If 2 heads show, the professor pays you $6. Let W be the random variable representing your
wealth during a play of the game.

(a) What elements are in the state space SW of W?

Solution: If the number of heads is 0, then you have money you have made is $(C − 5);
if the number of heads is 1, then you have made $(C − 2); if the number of heads is 2,
then you have made $(C + 6). Therefore, the possible outcomes of W are

SW = {C − 5, C − 2, C + 6}.

(b) What is the least amount of money $C you should charge your professor so that on average
you don’t lose money?
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Solution: We want to find some C such that E[W ] ≥ 0, the least amount C we should
charge would be chosen so that E[W ] = 0. We have

E[W ] = (C − 5)P (W = C − 5) + (C − 2)P (W = C − 2) + (C + 6)P (W = C + 6)

= (C − 5)P (0 heads) + (C − 2)P (1 heads) + (C + 6)P (2 heads)

= (C − 5)
(1

2

)2
+ (C − 2)

(
2

1

)(1

2

)2
+ (C + 6)

(1

2

)2
= C − 5

4
− 1 +

6

4
= C − 3

4
.

So, the least amount will be C = 3
4 dollars (i.e., 75 cents).

14. Suppose that X is a normal random variable with mean 75. Suppose that you know Var(12X+
42) = 25. Calculate P (X < 60). You can leave your answer in terms of Φ, the CDF of a
standard normal.

Solution: We know that for any random variable X, we have Var(aX + b) = a2 Var(X). So,
if Var(12X+ 42) = 25, then 1

4 Var(X) = 25 which implies that Var(X) = 100. This shows that

X
d
= N(75, 100). Now, letting Z be a standard normal,

P (X < 60) = P (
√

100Z + 75 < 60)

= P
(
Z <

60− 75

10

)
= P (Z < −1.5)

= Φ(−1.5)

= 1− Φ(1.5).

15. (a) UConn’s women’s basketball team takes about 2500 shots each year with a probability of
scoring on a given shot being 4/5. Use the Central Limit Theorem (normal approximation)
to approximate the probability that next year, of the 2500 shots taken by the team, they
score on at least 2015 shots?

Solution: Let Z represent a standard normal random variable. Let X be the number
of shots made by the team next year. Then, it is reasonable that X is a binomial
random variable with parameters n = 2500 and p = 4/5. Let µ = np = 2000 and
σ =

√
np(1− p) = 20. Therefore, using the normal approximation of a binomial random

variable,

P (X ≥ 2015) ≈ P (σ Z + µ ≥ 2015) = P
(
Z ≥ 2015− µ

σ

)
= P

(
Z ≥ 15

20

)
= 1− Φ

(15

20

)
(b) Every year, each UConn undergraduate student participates in a lottery for a chance to

win a dinner with Geno. Each year, an average of 3 students win this lottery. Using
a Poisson approximation, approximate the probability that at most 2 students will win
dinner with Geno next year.
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Solution: Let X be the number of students who win dinner with Geno. Let n be the
undergraduate population at UConn and p be the probability an individual undergradu-
ate wins a dinner with Geno. The assumption of the problem is that np = 3. In reality,
it is reasonable to assume X is a binomial random variable with parameters n and p.
Using the Poisson approximation of a binomial random variable, we have

P (X ≤ 2) ≈ P (Pois(3) ≤ 2) = P (Pois(3) = 0) + P (Pois(3) = 1) + P (Pois(3) = 2)

= e−3 + 3e−3 +
32

2
e−3

=
17

2
e−3.

(c) Give a brief, but reasonable explanation as to why a normal approximation is a reasonable
choice for the first part, whereas a Poisson approximation is a reasonable choice for the
second.

Solution: In part (a), we notice that np(1 − p) = 400 is reasonably large compared to
n = 2500, which is our first indication that a normal approximation is reasonable here. In
contrast, in part (b), we have that np = 3� n where n is the (large!) student population
at UConn. This indicates that a Poisson process is a prudent choice. Although based
on gut feeling rather than theory, it is worth noting that in part (a) we are asking for
the probability of a large range of values for X, which would make an approximation by
a discrete random variable (like a Poisson process) in which we need to sum all terms
much less tractable; in part (b), there is a very limited range of values of X we need
to consider, which is easy to sum, and suggests that an approximation by a continuous
random variable might not be judicious (like a normal approximation).
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