Extra Homework Exercises

Math 3160 - Spring 2015
Professor Hohn

List of supplementary exercises for Chapters 4 and 5.

Week 8

1. Let X be a random variable with CDF given by

$$
F_{X}(t)= \begin{cases}0 & t<-1 \\ \frac{1}{2} & -1 \leq t<1 \\ \frac{1}{2} t & 1 \leq t<2 \\ 1 & t \geq 2\end{cases}
$$

Calculate $\mathbb{E}[X]$.
2. Suppose that the number of earthquakes per year in a certain region in the US is well-modeled by a Poisson random variable with an average of 3 earthquakes occurring per year. Calculate the probability that in a given year there are at least 4 earthquakes in this region, given that there are at least 2 earthquakes.

Week 9

Spring break!

Week 10

3. Let $X \stackrel{d}{=} \operatorname{Bin}(4,1 / 3)$. What is $P\left(X^{2}+X \geq 1\right)$?
4. Let $X \stackrel{d}{=} \operatorname{Bin}(4,1 / 3)$ and $Y \stackrel{d}{=} \operatorname{Geom}(1 / 2)$. For each choice of Z, find the state space S_{Z} of Z and calculate $\mathbb{E}[Z]$:
(a) $Z=Y-X$.
(b) $Z=X^{2}+3 Y$.

Week 11

5. Use the differentiation trick

$$
\int_{0}^{\infty} t^{n} e^{-\lambda t} d t=(-1)^{n}\left(\frac{\partial}{\partial \lambda}\right)^{n} \int_{0}^{\infty} e^{-\lambda t} d t
$$

to find a general formula (depending on n) for $\int_{0}^{\infty} t^{n} e^{-\lambda t} d t$. Note that $\left(\frac{\partial}{\partial \lambda}\right)^{n}$ is just notation meaning the nth derivative with respect to λ; another way this is commonly written is $\frac{\partial^{n}}{\partial \lambda^{n}}$. Use this to find $\mathbb{E}\left[X^{5}\right]$ where $X \stackrel{d}{=} \operatorname{Exp}(2)$.
6. Recall that we showed in class

$$
\int_{-\infty}^{\infty} e^{-t^{2} / 2} d t=\sqrt{2 \pi}
$$

Use the same idea to show that

$$
\int_{-\infty}^{\infty} e^{-\alpha t^{2}} d t=\sqrt{\frac{\pi}{\alpha}}
$$

7. Use the differentiation trick

$$
\int_{-\infty}^{\infty} t^{2 n} e^{-\alpha t^{2}} d t=(-1)^{n}\left(\frac{\partial}{\partial \alpha}\right)^{n} \int_{-\infty}^{\infty} e^{-\alpha t^{2}} d t
$$

to find a general formula (depending on n) for $\int_{-\infty}^{\infty} t^{2 n} e^{-\alpha t^{2}} d t$. Note that $\left(\frac{\partial}{\partial \alpha}\right)^{n}$ is just notation meaning the nth derivative with respect to α; another way this is commonly written is $\frac{\partial^{n}}{\partial \alpha^{n}}$. Use this to find $\mathbb{E}\left[Z^{4}\right]$ where Z is a standard normal random variable.

Notational Hint: Notice that if you multiply together all the odd numbers $1 \cdot 3 \cdot 5 \cdots(2 N-1)$, you can rewrite this as $\prod_{k=0}^{N-1}(1+2 k)$. However, there is also a commonly accepted "double factorial" notation $(2 N-1)$!! which means exactly the product of all the positive odd numbers up to $2 N-1$ (the double factorial also works for even numbers if the number you write the double factorial against is even). So,

$$
1 \cdot 3 \cdot 5 \cdots(2 N-1)=\prod_{k=0}^{N-1}(1+2 k)=(2 N-1)!!.
$$

Week 14

8. Suppose that X and Y are jointly distributed and discrete with joint mass function

$$
p_{X, Y}(s, t)= \begin{cases}c(s+t) & s \in\{2,3,4,5\}, t \in\{1, \ldots, s\} \\ 0 & \text { otherwise }\end{cases}
$$

Find c and justify whether or not X and Y are independent.

