COVARIANCE AND CORRELATION LECTURE NOTES

PROFESSOR HOHN

Contents

1. Covariance 1
2. Correlation 4
3. Solutions to Exercises 7

1. Covariance

Definition 1.1. Let X and Y be jointly distributed random variable. The covariance of X and Y is defined by

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

This is equivalent to

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

where $\mu_{X}=\mathbb{E}[X]$ and $\mu_{Y}=\mathbb{E}[Y]$.

Properties 1.2. Let X, Y, and Z be jointly distributed random variables. From the definition of covariance, we derive the following:
(1) The covariance generalizes variance: $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
(2) The covariance is symmetric: $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$.
(3) For any fixed scalars $a, b \in \mathbb{R}, \operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$.
(4) The covariance is bilinear: $\operatorname{Cov}(X+a Y, Z)=\operatorname{Cov}(X, Z)+a \operatorname{Cov}(Y, Z)$ for any fixed $a \in \mathbb{R}$.
(5) If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

Exercise 1.3. Show that each of the listed properties of the covariance is true.

Solution. Click here.

Remark 1.4. It is true that if X and Y are independent, then $\operatorname{Cov}(X, Y)=0$. However, if $\operatorname{Cov}(X, Y)=0$ then we can not immediately conclude that X and Y are independent. Put graphically:

$$
\begin{aligned}
& X \& Y \text { independent } \Longrightarrow \operatorname{Cov}(X, Y)=0 \\
& \operatorname{Cov}(X, Y)=0 \nRightarrow X \& Y \text { independent. }
\end{aligned}
$$

Example 1.5. Let $Z \stackrel{d}{=} N(0,1)$ and define $X=Z^{2}$. It is clear that X and Z are not independent (clearly X depends on Z). Show that $\operatorname{Cov}(X, Z)=0$ even though X and Z are dependent.

Proof. With $X=Z^{2}$ we have

$$
\operatorname{Cov}(X, Z)=\mathbb{E}[X Z]-\mathbb{E}[X] \mathbb{E}[Z]=\mathbb{E}\left[Z^{3}\right]-\mathbb{E}\left[Z^{2}\right] \mathbb{E}[Z]
$$

Now, we know that $\mathbb{E}[Z]=0($ since $Z \stackrel{d}{=} N(0,1)$, so the mean is 0$)$. Also,

$$
\mathbb{E}\left[Z^{3}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{3} e^{-x^{2} / 2} d x
$$

We can perform an integration by parts with $u=x^{2}$ and $d v=x e^{-x^{2} / 2}$. Then $d u=2 x d x$ and $v=e^{-x^{2} / 2}$. So,

$$
\begin{aligned}
\int_{-\infty}^{\infty} x^{3} e^{-x^{2} / 2} d x & =\left.x^{2} e^{-x^{2} / 2}\right|_{-\infty} ^{\infty}-2 \int_{-\infty}^{\infty} x e^{-x^{2} / 2} d x \\
& =0-2 \int_{-\infty}^{\infty} x e^{-x^{2} / 2} d x \\
& =-2 \int_{-\infty}^{\infty} x e^{-x^{2} / 2} d x
\end{aligned}
$$

Recognize that this last integral is (up to a scalar constant) the same integral we calculate to find $\mathbb{E}[Z]$, which is 0 . Therefore $\mathbb{E}\left[Z^{3}\right]=0$. Hence $\operatorname{Cov}(X, Z)=0-0=0$.

Another way to come upon $\mathbb{E}\left[Z^{3}\right]=0$ is by noticing that x^{3} is an odd function, and $e^{-x^{2} / 2}$ is an even function. Hence, $x^{3} e^{-x^{2} / 2}$ is an odd function. We know that the integral of an odd function from $-\infty$ to ∞ is zero. Thus,

$$
\mathbb{E}\left[Z^{3}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{3} e^{-x^{2} / 2} d x=0
$$

Exercise 1.6. Let X be a random selection of number $\{2,3,4,5\}$, equally likely to be any of the found numbers. Once X is drawn, Y is randomly drawn from the numbers $\{1,2, \ldots, X\}$ with equal probability of getting each number. For example, given that $X=3$, then Y is drawn from the numbers $\{1,2,3\}$ with $P(Y=1 \mid X=3)=1 / 3, P(Y=2 \mid X=3)=1 / 3$, and $P(Y=3 \mid X=3)=1 / 3$. Find the joint probability mass function of X and Y and find $\operatorname{Cov}(X, Y)$.

Solution. Click here

Exercise 1.7. Let X and Y be jointly continuous random variables with joint density

$$
f_{X, Y}(s, t)= \begin{cases}c\left(s^{2} e^{-2 t}+e^{-t}\right) & 0<s<1,0<t<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{Cov}(X, Y)$.

Solution. Let's first find c. We have

$$
c \int_{0}^{\infty} \int_{0}^{1}\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t=c \int_{0}^{\infty}\left(\frac{1}{3} e^{-2 t}+e^{-t}\right) d t=c\left(\frac{1}{6}+1\right)=\frac{7 c}{6} .
$$

Therefore, $c=\frac{6}{7}$. For $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$, we will need the following:

$$
\begin{aligned}
\mathbb{E}[X Y] & =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1} s t\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1}\left(s^{3} t e^{-2 t}+s t e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty}\left(\frac{t}{4} e^{-2 t}+\frac{t}{2} e^{-t}\right) d t \\
& =\frac{6}{7}\left(\frac{1}{4} \cdot \frac{1}{4}+\frac{1}{2} \cdot 1\right) \\
& =\frac{6}{7} \cdot \frac{9}{16} .
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[X] & =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1} s\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1}\left(s^{3} e^{-2 t}+s e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty}\left(\frac{1}{4} e^{-2 t}+\frac{1}{2} e^{-t}\right) d t \\
& =\frac{6}{7}\left(\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{2} \cdot 1\right) \\
& =\frac{6}{7} \cdot \frac{5}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}[Y] & =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1} t\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1}\left(s^{2} t e^{-2 t}+t e^{-t}\right) d s d t \\
& =\frac{6}{7} \int_{0}^{\infty}\left(\frac{t}{3} e^{-2 t}+t e^{-t}\right) d t \\
& =\frac{6}{7}\left(\frac{1}{3} \cdot \frac{1}{4}+1\right) \\
& =\frac{6}{7} \cdot \frac{13}{12}
\end{aligned}
$$

Therefore,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\frac{6}{7}\left(\frac{9}{16}-\frac{5}{8} \cdot \frac{13}{12} \cdot \frac{6}{7}\right)=-\frac{3}{196}
$$

2. Correlation

Definition 2.1. Suppose that X and Y are jointly distributed random variables with nonzero variances. Then the correlation of X and Y is

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Intuition 2.2. Remember back in multivariable calculus that if you take vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ we could define the dot-product $\mathbf{v} \cdot \mathbf{w}$ of the two vectors. Also remember that if you wanted to find the length of a vector \mathbf{v}, you could do this by $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$. Now, speaking abstractly, the covariance of two random variables acts like a generalized "dot-product" between the two
variables. That is, we can think of $\operatorname{Cov}(X, Y)$ roughly as a dot product of X and Y. In this analogy then, the "length" of a random variable is $\|X\|=\sqrt{\operatorname{Cov}(X, X)}=\sqrt{\operatorname{Var}(X)}$. Let's also remember that with two vectors \mathbf{v} and \mathbf{w}, we had an interpretation of the dot-product as $\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos (\theta)$ where θ is the angle between the vectors. Solving for $\cos (\theta)$ we have $\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|v\|\|w\|}$. Hence with respect to the interpretation of $\operatorname{Cov}(X, Y)$ as the dot product of X and $Y,\|X\|=\sqrt{\operatorname{Var}(X)}$, and $\|Y\|=\sqrt{\operatorname{Var}(Y)}$, the formula for correlation gives $\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\|X\|\|Y\|}$. With this interpretation then, you can invision $\operatorname{Corr}(X, Y)=\cos (\theta)$ where θ is a (very roughly) the "angle between" the random variables X and Y.

Proposition 2.3. For any random variables X and Y, it holds that $-1 \leq \operatorname{Corr}(X, Y) \leq 1$.
Intuitive Proof. With the interpretation that $\operatorname{Corr}(X, Y)=\cos (\theta)$ where θ is some generalized notion of the angle between X and Y, since cosine is always bounded between -1 and 1 , so must be the correlation.

Definition 2.4. If $\operatorname{Corr}(X, Y)=0$, we say that X and Y are uncorrelated.
Remark 2.5. Notice that $\operatorname{Corr}(X, Y)=0$ if and only if $\operatorname{Cov}(X, Y)=0$. So, all the previous properties discussing when the covariance is zero still hold for the correlation.

Example 2.6. Show that $\operatorname{Corr}(a X+b, Y)=\operatorname{Corr}(X, Y)$ for any fixed scalars $a>0$ and $b \in \mathbb{R}$.

Solution. For random variables X and Y, and scalars $a, b \in \mathbb{R}$, we have shown that $\operatorname{Cov}(a X+b, Y)=a \operatorname{Cov}(X, Y)$, and we have seen that $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$. Also, note that since $a>0, \sqrt{a^{2}}=|a|=a$. Therefore,

$$
\begin{array}{r}
\operatorname{Corr}(a X+b, Y)=\frac{\operatorname{Cov}(a X+b, Y)}{\sqrt{\operatorname{Var}(a X+b)} \sqrt{\operatorname{Var}(Y)}}=\frac{a \operatorname{Cov}(X, Y)}{\sqrt{a^{2} \operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} \\
=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\operatorname{Corr}(X, Y) .
\end{array}
$$

Let's make a note that if $a<0$, then $\sqrt{a^{2}}=|a|=-a$, so our previous calculation would have left us with $\operatorname{Corr}(a X+b, Y)=-\operatorname{Corr}(X, Y)$, but this makes sense with our "dot product" intuition, since if $a<0$, then $a X$ "switches the direction" of X.

Example 2.7. Let X be a random selection of number $\{2,3,4,5\}$, equally likely to be any of the found numbers. Once X is drawn, Y is randomly drawn from the numbers $\{1,2, \ldots, X\}$
with equal probability of getting each number. For example, given that $X=3$, then Y is drawn from the numbers $\{1,2,3\}$ with $P(Y=1 \mid X=3)=1 / 3, P(Y=2 \mid X=3)=1 / 3$, and $P(Y=3 \mid X=3)=1 / 3$. Find $\operatorname{Corr}(X, Y)$.

Solution. Much of the work we've already done in Exercise 1.6. We found $\operatorname{Cov}(X, Y)=$ $\frac{5}{8}, \mathbb{E}[X]=\frac{9}{4}$ and $\mathbb{E}[Y]=\frac{7}{2}$. We have left to find $\mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}\left[Y^{2}\right]$. To this end,

$$
\begin{array}{r}
\mathbb{E}\left[X^{2}\right]=\sum_{s} \sum_{t} s^{2} p_{X, Y}(s, t)=\sum_{s=2}^{5} \sum_{t=1}^{s} s^{2} \frac{1}{4 s}=\sum_{s=2}^{5} \sum_{t=1}^{s} \frac{s}{4} \\
=\sum_{s=2}^{5} \frac{s^{2}}{4}=\frac{4}{4}+\frac{9}{4}+\frac{16}{4}+\frac{25}{4}=\frac{27}{2}
\end{array}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[Y^{2}\right] & =\sum_{s} \sum_{t} t^{2} p_{X, Y}(s, t)=\sum_{s=2}^{5} \sum_{t=1}^{s} t^{2} \frac{1}{4 s}=\sum_{s=2}^{5} \frac{1}{4 s} \sum_{t=1}^{s} t^{2} \\
& =\frac{1}{4 \cdot 2}(1+4)+\frac{1}{4 \cdot 3}(1+4+9)+\frac{1}{4 \cdot 4}(1+4+9+16)+\frac{1}{4 \cdot 5}(1+4+9+16+25) \\
& =\frac{77}{12}
\end{aligned}
$$

From before, we now have

$$
\operatorname{Var}(X)=\frac{27}{2}-\left(\frac{7}{2}\right)^{2}=\frac{5}{4}
$$

and

$$
\operatorname{Var}(Y)=\frac{77}{12}-\left(\frac{9}{4}\right)^{2}=\frac{65}{48}
$$

Therefore,

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{\frac{5}{8}}{\sqrt{(65 / 48)} \sqrt{(5 / 4)}} \approx .4804
$$

Exercise 2.8. Let X and Y be jointly continuous random variables with joint density

$$
f_{X, Y}(s, t)= \begin{cases}c\left(s^{2} e^{-2 t}+e^{-t}\right) & 0<s<1,0<t<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{Corr}(X, Y)$.
Solution. Click here.

3. Solutions to Exercises

Solution to 1.3. Let X, Y, and Z be random variables and $a, b \in \mathbb{R}$ be scalars. Then,
(1) For a random variable X,

$$
\operatorname{Cov}(X, X)=\mathbb{E}[X \cdot X]-\mathbb{E}[X] \mathbb{E}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=\operatorname{Var}(X) .
$$

(2) For random variables X and Y,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}[Y X]-\mathbb{E}[Y] \mathbb{E}[X]=\operatorname{Cov}(Y, X)
$$

(3) For random variables X and Y, and scalars $a, b \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{Cov}(a X+b, Y) & =\mathbb{E}[(a X+b) Y]-\mathbb{E}[a X+b] \mathbb{E}[Y] \\
& =a \mathbb{E}[X Y]+b \mathbb{E}[Y]-(a \mathbb{E}[X] \mathbb{E}[Y]+b \mathbb{E}[Y]) \\
& =a(\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y])+b(\mathbb{E}[Y]-\mathbb{E}[Y]) \\
& =a \operatorname{Cov}(X, Y) .
\end{aligned}
$$

(4) For random variables X, Y, and Z, and scalar $a \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{Cov}(X+a Y, Z) & =\mathbb{E}[(X+a Y) Z]-\mathbb{E}[X+a Y] \mathbb{E}[Z] \\
& =\mathbb{E}[X Z]+a \mathbb{E}[Y Z]-(\mathbb{E}[X] \mathbb{E}[Z]+a \mathbb{E}[Y] \mathbb{E}[Z]) \\
& =(\mathbb{E}[X Z]-\mathbb{E}[X] \mathbb{E}[Z])+a(\mathbb{E}[Y Z]-\mathbb{E}[Y] \mathbb{E}[Z]) \\
& =\operatorname{Cov}(X, Z)+a \operatorname{Cov}(Y, Z) .
\end{aligned}
$$

(5) If X and Y are independent random variables, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, so

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}[X] \mathbb{E}[Y]-\mathbb{E}[X] \mathbb{E}[Y]=0
$$

Solution to 1.6. For the joint probability mass function, we have

$$
p_{X, Y}(s, t)=P(X=s, Y=t)=P(Y=t \mid X=s) P(X=s) .
$$

Further, by the assumptions of the problem, $P(X=s)=\frac{1}{4}$ for any choice of $s \in\{2,3,4,5\}$, and

$$
P(Y=t \mid X=s)= \begin{cases}\frac{1}{s} & t \leq s \\ 0 & \text { otherwise }\end{cases}
$$

So, we have

$$
p_{X, Y}(s, t)=P(Y=t \mid X=s) P(X=s)=\left\{\begin{array}{ll}
\frac{1}{4 s} & t \leq s \\
0 & \text { otherwise }
\end{array} .\right.
$$

As a table, this is

X	1	2	3	4	5	$X=k$
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0	0	$\frac{1}{4}$
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	0	$\frac{1}{4}$
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	0	$\frac{1}{4}$
5	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{4}$
$Y=k$	$\frac{77}{240}$	$\frac{77}{240}$	$\frac{47}{240}$	$\frac{9}{80}$	$\frac{1}{20}$	

To find $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ we have

$$
\begin{aligned}
& \mathbb{E}[X Y]= \sum_{s} \sum_{t} s t p_{X, Y}(s, t) \\
&= \sum_{s=2}^{5} \sum_{t=1}^{s} s t \frac{1}{4 s} \\
&= \sum_{s=2}^{5} \sum_{t=1}^{s} \frac{t}{4} \\
&=\left(\frac{1}{4}+\frac{2}{4}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}+\frac{5}{4}\right) \\
&= \frac{17}{2} \\
& \quad \mathbb{E}[X]=2\left(\frac{1}{4}\right)+3\left(\frac{1}{4}\right)+4\left(\frac{1}{4}\right)+5\left(\frac{1}{4}\right)=\frac{7}{2}
\end{aligned}
$$

and

$$
\mathbb{E}[Y]=1\left(\frac{77}{240}\right)+2\left(\frac{77}{240}\right)+3\left(\frac{47}{240}\right)+4\left(\frac{9}{80}\right)+5\left(\frac{1}{20}\right)=\frac{9}{4}
$$

Therefore $\operatorname{Cov}(X, Y)=\frac{17}{2}-\frac{7}{2} \cdot \frac{9}{4}=\frac{5}{8}$.

Solution to 2.8. Much of the work has already been done in Example 1.7. We found $\operatorname{Cov}(X, Y)=-\frac{3}{196}, \mathbb{E}[X]=\frac{6}{7} \cdot \frac{5}{8}=\frac{15}{28}$, and $\mathbb{E}[Y]=\frac{6}{7} \cdot \frac{13}{12}=\frac{13}{14}$. We have left to find $\mathbb{E}\left[X^{2}\right]$ and $\mathbb{E}\left[Y^{2}\right]$. To this end,

$$
\begin{array}{r}
\mathbb{E}\left[X^{2}\right]=\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1} s^{2}\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t=\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1}\left(s^{4} e^{-2 t}+s^{2} e^{-t}\right) d s d t \\
=\frac{6}{7} \int_{0}^{\infty}\left(\frac{1}{5} e^{-2 t}+\frac{1}{3} e^{-t}\right) d t=\frac{6}{7}\left(\frac{1}{10}+\frac{1}{3}\right)=\frac{13}{35}
\end{array}
$$

and

$$
\begin{array}{r}
\mathbb{E}\left[Y^{2}\right]=\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1} t^{2}\left(s^{2} e^{-2 t}+e^{-t}\right) d s d t=\frac{6}{7} \int_{0}^{\infty} \int_{0}^{1}\left(s^{2} t^{2} e^{-2 t}+t^{2} e^{-t}\right) d s d t \\
=\frac{6}{7} \int_{0}^{\infty}\left(\frac{1}{3} t^{2} e^{-2 t}+t^{2} e^{-t}\right) d t=\frac{6}{7}\left(\frac{1}{12}+2\right)=\frac{25}{14} .
\end{array}
$$

We then find

$$
\operatorname{Var}(X)=\frac{13}{35}-\left(\frac{15}{28}\right)^{2}=\frac{331}{3920}
$$

and

$$
\operatorname{Var}(Y)=\frac{25}{14}-\left(\frac{13}{14}\right)^{2}=\frac{181}{196}
$$

Therefore,

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}=\frac{-3 / 196}{\sqrt{(331 / 3920)} \sqrt{(181 / 196)}} \approx-0.0548
$$

