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1. Covariance

Definition 1.1. Let X and Y be jointly distributed random variable. The covariance of X

and Y is defined by

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

This is equivalent to

Cov(X,Y ) = E[(X − µX)(Y − µY )]

where µX = E[X] and µY = E[Y ].

Properties 1.2. Let X, Y , and Z be jointly distributed random variables. From the defini-

tion of covariance, we derive the following:

(1) The covariance generalizes variance: Cov(X,X) = Var(X).

(2) The covariance is symmetric: Cov(X,Y ) = Cov(Y,X).

(3) For any fixed scalars a, b ∈ R, Cov(aX + b, Y ) = aCov(X,Y ).

(4) The covariance is bilinear: Cov(X + aY, Z) = Cov(X,Z) + aCov(Y,Z) for any fixed

a ∈ R.

(5) If X and Y are independent, then Cov(X,Y ) = 0.

Exercise 1.3. Show that each of the listed properties of the covariance is true.

Solution. Click here.
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Remark 1.4. It is true that if X and Y are independent, then Cov(X,Y ) = 0. However, if

Cov(X,Y ) = 0 then we can not immediately conclude that X and Y are independent. Put

graphically:

X&Y independent =⇒ Cov(X,Y ) = 0

Cov(X,Y ) = 0 6=⇒ X&Y independent.

Example 1.5. Let Z
d
= N(0, 1) and define X = Z2. It is clear that X and Z are not

independent (clearly X depends on Z). Show that Cov(X,Z) = 0 even though X and Z are

dependent.

Proof. With X = Z2 we have

Cov(X,Z) = E[XZ]− E[X]E[Z] = E[Z3]− E[Z2]E[Z].

Now, we know that E[Z] = 0 (since Z
d
= N(0, 1), so the mean is 0). Also,

E[Z3] =
1√
2π

∫ ∞
−∞

x3e−x
2/2 dx.

We can perform an integration by parts with u = x2 and dv = xe−x
2/2. Then du = 2xdx and

v = e−x
2/2. So, ∫ ∞

−∞
x3e−x

2/2 dx = x2e−x
2/2
∣∣∞
−∞ − 2

∫ ∞
−∞

xe−x
2/2 dx

= 0− 2

∫ ∞
−∞

xe−x
2/2 dx

= −2

∫ ∞
−∞

xe−x
2/2 dx

Recognize that this last integral is (up to a scalar constant) the same integral we calculate

to find E[Z], which is 0. Therefore E[Z3] = 0. Hence Cov(X,Z) = 0− 0 = 0.

Another way to come upon E[Z3] = 0 is by noticing that x3 is an odd function, and e−x
2/2

is an even function. Hence, x3e−x
2/2 is an odd function. We know that the integral of an

odd function from −∞ to ∞ is zero. Thus,

E[Z3] =
1√
2π

∫ ∞
−∞

x3e−x
2/2 dx = 0
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Exercise 1.6. Let X be a random selection of number {2, 3, 4, 5}, equally likely to be any of

the found numbers. Once X is drawn, Y is randomly drawn from the numbers {1, 2, ..., X}

with equal probability of getting each number. For example, given that X = 3, then Y is

drawn from the numbers {1, 2, 3} with P (Y = 1 | X = 3) = 1/3, P (Y = 2 | X = 3) = 1/3,

and P (Y = 3 | X = 3) = 1/3. Find the joint probability mass function of X and Y and find

Cov(X,Y ).

Solution. Click here

Exercise 1.7. Let X and Y be jointly continuous random variables with joint density

fX,Y (s, t) =

c (s2e−2t + e−t) 0 < s < 1, 0 < t <∞

0 otherwise

Find Cov(X,Y ).

Solution. Let’s first find c. We have

c

∫ ∞
0

∫ 1

0
(s2e−2t + e−t) dsdt = c

∫ ∞
0

(1

3
e−2t + e−t

)
dt = c

(
1

6
+ 1

)
=

7c

6
.

Therefore, c = 6
7 . For Cov(X,Y ) = E[XY ]− E[X]E[Y ], we will need the following:

E[XY ] =
6

7

∫ ∞
0

∫ 1

0
st(s2e−2t + e−t) dsdt

=
6

7

∫ ∞
0

∫ 1

0
(s3te−2t + ste−t) dsdt

=
6

7

∫ ∞
0

( t
4
e−2t +

t

2
e−t
)
dt

=
6

7

(
1

4
· 1

4
+

1

2
· 1
)

=
6

7
· 9

16
.
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E[X] =
6

7

∫ ∞
0

∫ 1

0
s(s2e−2t + e−t) dsdt

=
6

7

∫ ∞
0

∫ 1

0
(s3e−2t + se−t) dsdt

=
6

7

∫ ∞
0

(1

4
e−2t +

1

2
e−t
)
dt

=
6

7

(
1

4
· 1

2
+

1

2
· 1
)

=
6

7
· 5

8

and

E[Y ] =
6

7

∫ ∞
0

∫ 1

0
t(s2e−2t + e−t) dsdt

=
6

7

∫ ∞
0

∫ 1

0
(s2te−2t + te−t) dsdt

=
6

7

∫ ∞
0

( t
3
e−2t + te−t

)
dt

=
6

7

(
1

3
· 1

4
+ 1

)
=

6

7
· 13

12

Therefore,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] =
6

7

( 9

16
− 5

8
· 13

12
· 6

7

)
= − 3

196
.

2. Correlation

Definition 2.1. Suppose that X and Y are jointly distributed random variables with non-

zero variances. Then the correlation of X and Y is

Corr(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
.

Intuition 2.2. Remember back in multivariable calculus that if you take vectors v,w ∈ Rn

we could define the dot-product v ·w of the two vectors. Also remember that if you wanted

to find the length of a vector v, you could do this by ‖v‖ =
√

v · v. Now, speaking abstractly,

the covariance of two random variables acts like a generalized “dot-product” between the two
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variables. That is, we can think of Cov(X,Y ) roughly as a dot product of X and Y . In this

analogy then, the “length” of a random variable is ‖X‖ =
√

Cov(X,X) =
√

Var(X). Let’s

also remember that with two vectors v and w, we had an interpretation of the dot-product as

v ·w = ‖v‖ ‖w‖ cos(θ) where θ is the angle between the vectors. Solving for cos(θ) we have

cos(θ) = v·w
‖v‖ ‖w‖ . Hence with respect to the interpretation of Cov(X,Y ) as the dot product

of X and Y , ‖X‖ =
√

Var(X), and ‖Y ‖ =
√

Var(Y ), the formula for correlation gives

Corr(X,Y ) = Cov(X,Y )
‖X‖‖Y ‖ . With this interpretation then, you can invision Corr(X,Y ) = cos(θ)

where θ is a (very roughly) the “angle between” the random variables X and Y .

Proposition 2.3. For any random variables X and Y , it holds that −1 ≤ Corr(X,Y ) ≤ 1.

Intuitive Proof. With the interpretation that Corr(X,Y ) = cos(θ) where θ is some

generalized notion of the angle between X and Y , since cosine is always bounded between

−1 and 1, so must be the correlation.

Definition 2.4. If Corr(X,Y ) = 0, we say that X and Y are uncorrelated.

Remark 2.5. Notice that Corr(X,Y ) = 0 if and only if Cov(X,Y ) = 0. So, all the previous

properties discussing when the covariance is zero still hold for the correlation.

Example 2.6. Show that Corr(aX + b, Y ) = Corr(X,Y ) for any fixed scalars a > 0 and

b ∈ R.

Solution. For random variables X and Y , and scalars a, b ∈ R, we have shown that

Cov(aX + b, Y ) = aCov(X,Y ), and we have seen that Var(aX + b) = a2 Var(X). Also, note

that since a > 0,
√
a2 = |a| = a. Therefore,

Corr(aX + b, Y ) =
Cov(aX + b, Y )√

Var(aX + b)
√

Var(Y )
=

aCov(X,Y )√
a2 Var(X)

√
Var(Y )

=
Cov(X,Y )√

Var(X)
√

Var(Y )
= Corr(X,Y ).

Let’s make a note that if a < 0, then
√
a2 = |a| = −a, so our previous calculation would have

left us with Corr(aX + b, Y ) = −Corr(X,Y ), but this makes sense with our “dot product”

intuition, since if a < 0, then aX “switches the direction” of X.

Example 2.7. Let X be a random selection of number {2, 3, 4, 5}, equally likely to be any of

the found numbers. Once X is drawn, Y is randomly drawn from the numbers {1, 2, ..., X}
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with equal probability of getting each number. For example, given that X = 3, then Y is

drawn from the numbers {1, 2, 3} with P (Y = 1 | X = 3) = 1/3, P (Y = 2 | X = 3) = 1/3,

and P (Y = 3 | X = 3) = 1/3. Find Corr(X,Y ).

Solution. Much of the work we’ve already done in Exercise 1.6. We found Cov(X,Y ) =
5

8
, E[X] =

9

4
and E[Y ] =

7

2
. We have left to find E[X2] and E[Y 2]. To this end,

E[X2] =
∑
s

∑
t

s2 pX,Y (s, t) =

5∑
s=2

s∑
t=1

s2
1

4s
=

5∑
s=2

s∑
t=1

s

4

=

5∑
s=2

s2

4
=

4

4
+

9

4
+

16

4
+

25

4
=

27

2

and

E[Y 2] =
∑
s

∑
t

t2 pX,Y (s, t) =

5∑
s=2

s∑
t=1

t2
1

4s
=

5∑
s=2

1

4s

s∑
t=1

t2

=
1

4 · 2
(1 + 4) +

1

4 · 3
(1 + 4 + 9) +

1

4 · 4
(1 + 4 + 9 + 16) +

1

4 · 5
(1 + 4 + 9 + 16 + 25)

=
77

12

From before, we now have

Var(X) =
27

2
−
(7

2

)2
=

5

4

and

Var(Y ) =
77

12
−
(

9

4

)2

=
65

48

Therefore,

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
=

5
8√

(65/48)
√

(5/4)
≈ .4804

Exercise 2.8. Let X and Y be jointly continuous random variables with joint density

fX,Y (s, t) =

c(s
2e−2t + e−t) 0 < s < 1, 0 < t <∞

0 otherwise

Find Corr(X,Y ).

Solution. Click here.
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3. Solutions to Exercises

Solution to 1.3. Let X, Y , and Z be random variables and a, b ∈ R be scalars. Then,

(1) For a random variable X,

Cov(X,X) = E[X ·X]− E[X]E[X] = E[X2]−
(
E[X]

)2
= Var(X).

(2) For random variables X and Y ,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[Y X]− E[Y ]E[X] = Cov(Y,X).

(3) For random variables X and Y , and scalars a, b ∈ R,

Cov(aX + b, Y ) = E[(aX + b)Y ]− E[aX + b]E[Y ]

= aE[XY ] + bE[Y ]−
(
aE[X]E[Y ] + bE[Y ]

)
= a

(
E[XY ]− E[X]E[Y ]

)
+ b
(
E[Y ]− E[Y ]

)
= aCov(X,Y ).

(4) For random variables X, Y , and Z, and scalar a ∈ R,

Cov(X + aY, Z) = E[(X + aY )Z]− E[X + aY ]E[Z]

= E[XZ] + aE[Y Z]−
(
E[X]E[Z] + aE[Y ]E[Z]

)
=
(
E[XZ]− E[X]E[Z]) + a

(
E[Y Z]− E[Y ]E[Z]

)
= Cov(X,Z) + aCov(Y, Z).

(5) If X and Y are independent random variables, then E[XY ] = E[X]E[Y ], so

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0.

Solution to 1.6. For the joint probability mass function, we have

pX,Y (s, t) = P (X = s, Y = t) = P (Y = t | X = s)P (X = s).
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Further, by the assumptions of the problem, P (X = s) = 1
4 for any choice of s ∈ {2, 3, 4, 5},

and

P (Y = t | X = s) =


1
s t ≤ s

0 otherwise

So, we have

pX,Y (s, t) = P (Y = t | X = s)P (X = s) =


1
4s t ≤ s

0 otherwise
.

As a table, this is

X

Y
1 2 3 4 5 X = k

2 1
8

1
8 0 0 0 1

4

3 1
12

1
12

1
12 0 0 1

4

4 1
16

1
16

1
16

1
16 0 1

4

5 1
20

1
20

1
20

1
20

1
20

1
4

Y = k 77
240

77
240

47
240

9
80

1
20

To find Cov(X,Y ) = E[XY ]− E[X]E[Y ] we have

E[XY ] =
∑
s

∑
t

st pX,Y (s, t)

=
5∑

s=2

s∑
t=1

st
1

4s

=
5∑

s=2

s∑
t=1

t

4

=
(1

4
+

2

4

)
+
(1

4
+

2

4
+

3

4

)
+
(1

4
+

2

4
+

3

4
+

4

4

)
+
(1

4
+

2

4
+

3

4
+

4

4
+

5

4

)
=

17

2

E[X] = 2

(
1

4

)
+ 3

(
1

4

)
+ 4

(
1

4

)
+ 5

(
1

4

)
=

7

2

and
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E[Y ] = 1

(
77

240

)
+ 2

(
77

240

)
+ 3

(
47

240

)
+ 4

(
9

80

)
+ 5

(
1

20

)
=

9

4

Therefore Cov(X,Y ) =
17

2
− 7

2
· 9

4
=

5

8
.

Solution to 2.8. Much of the work has already been done in Example 1.7. We found

Cov(X,Y ) = − 3
196 , E[X] = 6

7 ·
5
8 = 15

28 , and E[Y ] = 6
7 ·

13
12 = 13

14 . We have left to find E[X2]

and E[Y 2]. To this end,

E[X2] =
6

7

∫ ∞
0

∫ 1

0
s2(s2e−2t + e−t) dsdt =

6

7

∫ ∞
0

∫ 1

0
(s4e−2t + s2e−t) dsdt

=
6

7

∫ ∞
0

(1

5
e−2t +

1

3
e−t
)
dt =

6

7

( 1

10
+

1

3

)
=

13

35
.

and

E[Y 2] =
6

7

∫ ∞
0

∫ 1

0
t2(s2e−2t + e−t) dsdt =

6

7

∫ ∞
0

∫ 1

0

(
s2t2e−2t + t2e−t

)
dsdt

=
6

7

∫ ∞
0

(1

3
t2e−2t + t2e−t

)
dt =

6

7

( 1

12
+ 2
)

=
25

14
.

We then find

Var(X) =
13

35
−
(15

28

)2
=

331

3920

and

Var(Y ) =
25

14
−
(13

14

)2
=

181

196

Therefore,

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
=

−3/196√
(331/3920)

√
(181/196)

≈ −0.0548
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