PRACTICE PROBLEMS FOR EXAM 1

Math 3160Q - Spring 2015
Professor Hohn

Below is a list of practice questions for Exam 1. Any quiz, homework, or example problem has a chance of being on the exam. For more practice, I suggest you work through the review questions at the end of each chapter as well.

1. Exams at the Starfleet Academy are scored as either Pass or Fail. Jean Luc Picard must take exactly one of three exams : Quantum Field Theory (QFT), General Relativity (GR), or Underwater Basket Weaving (UBW). He has a 60% chance of taking the QFT exam, which he has a 50% chance of passing; he has a 30% chance of taking the GR exam, which he has a 70% chance of passing; he has a measly 10% chance of taking the UBW exam, which he has a 90% chance of passing.
(a) What is the probability that Jean Luc passes his exam?

Solution: Let Q, G, R represent the events that J.L. Picard takes QFT, GR, or UBW, respectively. Let W be the event that he passes his exam. We are given the following $P(Q)=.6, P(G)=.3, P(U)=.1$ and $P(W \mid Q)=.5, P(W \mid G)=.7, P(W \mid U)=.9$. We want to find $P(W)$, so using our partitioning argument,

$$
P(W)=P(W \mid Q) P(Q)+P(W \mid G) P(G)+P(W \mid U) P(U)=(.6)(.5)+(.3)(.7)+(.1)(.9)
$$

(b) Given that he passes his exam, what is the probability that he took the QFT exam?

Solution: We want $P(Q \mid W)$. Using a Bayes' formula argument

$$
P(Q \mid W)=\frac{P(W \mid Q) P(Q)}{P(W)}=\frac{(.6)(.5)}{(.6)(.5)+(.3)(.7)+(.1)(.9)}
$$

where the denominator was found in part (a).
2. An urn initially contains 5 red marbles and 7 blue marbles. Bored out of your mind, you decide to play a "game" that goes as follows. During each round, you randomly pull a marble out of the urn. If the marble you chose was red, you return the marble back into the urn along with 1 more blue marble. If the marble you chose was blue, you put the marble back into the urn along with 2 more red marbles. What is the probability that on the first round you drew a red marble, and on the third round you drew a blue marble?

Solution: Let R_{i} be the event that you drew a red marble on the i th round and B_{i} be the event that you drew a blue marble on the i th round $(i=1,2,3)$. We are looking for $P\left(R_{1} \cap B_{3}\right)$. We divide this into the cases which consider what you drew on the second round,

$$
P\left(R_{1} \cap B_{3}\right)=P\left(R_{1} \cap R_{2} \cap B_{3}\right)+P\left(R_{1} \cap B_{2} \cap B_{3}\right)
$$

Now, using the multiplication rule

$$
\begin{array}{r}
P\left(R_{1} \cap B_{3}\right)=P\left(R_{1}\right) P\left(R_{2} \mid R_{1}\right) P\left(B_{3} \mid R_{2} \cap R_{1}\right)+P\left(R_{1}\right) P\left(B_{2} \mid R_{1}\right) P\left(B_{3} \mid B_{2} \cap R_{1}\right) \\
=\frac{5}{7+5} \cdot \frac{5}{8+5} \cdot \frac{9}{9+5}+\frac{5}{7+5} \cdot \frac{8}{8+5} \cdot \frac{8}{8+7} \\
=\frac{5}{12} \cdot \frac{5}{13} \cdot \frac{9}{14}+\frac{5}{12} \cdot \frac{8}{13} \cdot \frac{8}{15}
\end{array}
$$

3. Your professor hands you three coins. The first coin has a probability of 6 of landing heads; the second coin has a probability .3 of landing heads; the third coin has a probability .5 of landing heads (i.e., the third coin is fair). You are asked to conduct the following experiment: You flip the first coin and note the result (heads or tails). If the first flip resulted in heads, you then flip the second coin and note the result. If, on the other hand, the first flip resulted in a tails, you then flip the third coin and note the result.
(a) What is a reasonable sample space Ω for this experiment?

Solution: At the end of the experiment, we will have just flipped two coins. So, a reasonable sample space is

$$
\Omega=\{H H, H T, T H, T T\}
$$

(b) Let X be (the random variable giving) the number of heads which occurred during the experiment. What is the state space S_{X} of X ?

Solution: We will either flip 0,1 , or 2 heads. Therefore $S_{X}=\{0,1,2\}$.
(c) If X is the same random variable as in the previous part and F_{X} is the cumulative distribution function (CDF) of X, what is $F_{X}(1.5) ?$

Solution: $F_{X}(1.5)=P(X \leq 1.5)$. Since the event $\{X \leq 1.5\}$ is the same as $\{X=$ $0\} \cup\{X=1\}$ which is the same as $\{T T\} \cup\{T H\} \cup\{H T\}$, we have

$$
P(X \leq 1.5)=P(T T)+P(H T)+P(T H)=(.4)(.5)+(.6)(.7)+(.4)(.5)=.82
$$

4. A circuit has three nodes: A, B, and C. Each node is independently functional with probability p_{A}, p_{B}, and p_{C} respectively. The circuit works if either A is functional, or both B and C are functional. Otherwise, the circuit does not work. Find the probability that the circuit is working. (Your answer should be in terms of p_{A}, p_{B}, and p_{C}. This problem is not meant to be tricky!)

Solution: Let F be the event that the circuit is functional. Let A be the event that A is functional $\left(P(A)=p_{A}\right), B$ be the event that B is functional $\left(P(B)=p_{B}\right)$, and C be the event that C is functional $\left(P(C)=p_{C}\right)$. Then, we want to find $P(F)=P(A \cup(B \cap C))$.

$$
\begin{array}{rlr}
P(F) & =P(A \cup(B \cap C)) \\
& =P(A)+P(B \cap C)-P(A \cap(B \cap C)) \quad \text { inclusion/exclusion principle } \\
& =P(A)+P(B) P(C)-P(A) P(B) P(C) \quad \text { by independence } \\
& =p_{A}+p_{B} p_{C}-p_{A} p_{B} p_{C} &
\end{array}
$$

5. After watching Guardians of the Galaxy, our class became extremely motivated to befriend a raccoon. In this class there are 20 males and 16 females.
(a) We are going to make two committees from the people in this class. The first committee will consist of 6 people, 3 males and 3 females, to search for a raccoon to befriend; the second committee will consist of 4 other people, 2 males and 2 females, to wait near a phone and medical supplies so that after the first committee actually finds a raccoon and realizes that they're vicious beasts, they can be bandaged up and an ambulance can be called. How many ways are there for us to create these committees?
Solution: We want to know how many ways to select 5 males and 5 females from the class to be on the committees, then find the number of ways these 5 males and 5 females can be put into two groups (one to befriend the raccoon and one to be ready with the medical supplies). First, we find out how many ways we can choose the ten students that will be on the committees.

$$
\overbrace{\binom{20}{5}}^{\text {males }} \cdot \overbrace{\binom{16}{5}}^{\text {females }}=67721472
$$

Once these students are chosen, we have $\binom{5}{3}$ ways to select which 3 males will be on the first committee, and we have $\binom{5}{3}$ ways to select which 3 females will be on the first committee. The other 4 students will be on the second committee. This means that for the first committee, we have $\binom{5}{3}\binom{5}{3}=\binom{5}{3}^{2}=10^{2}=100$ ways to organize the 5 students into two committees. Hence, the number of ways to create the two committees is

$$
\binom{20}{5}\binom{16}{5}\binom{5}{3}^{2}=15504 \cdot 4368 \cdot 100=6772147200
$$

(b) After everyone survived the "raccoon incident" (and I lost my job), all 36 people in this class return to the classroom and shake everyone else's hands (no repeated handshakes) on a job well done. How many handshakes took place?
Solution: There are a couple ways to think about this problem. Here are two:
Way 1: Student 1 shakes 35 other hands, Student 2 shakes 34 other hands, Student 3 shakes 33 other hands, and so on. Then, we add up all of the handshakes.

$$
35+34+33+32+\ldots+2+1=36 \cdot(35 / 2)=630
$$

Way 2: We can think of the handshake question as wanting to find out how many ways we can group two students together (who would then shake hands). That is, we want to
know how many ways we can choose 2 from 36 .

$$
\binom{36}{2}=630
$$

6. You... yes YOU!... have become sick of internet memes. Upon this realization, you decide to make your internet password using the letters MEMEOFF.
(a) How many different passwords (distinguishable letter arrangements) can you make such that M is the first and fourth letter in the password?

Solution: We are looking for all passwords of the form $M * * M * * *$. So we need to distinguishably arrange the remaining five letters, EEOFF, into the five asterisk spots. From the word counting principle, there are $\binom{5}{2,2,1}$ ways to do this. So the answer is

$$
\binom{5}{2,2,1}
$$

(b) Let A be the event that M is the first and fourth letter in the password, and let E be the event that both Es are next to each other in the password. If each password is equally likely, what is $P(E \mid A)$?
Solution: From part (a) we found that the number of elements in A is $\binom{5}{2,2,1}$. To count the number of elements in $E \cap A$, we consider the arrangements for the Es: $M E E M * * *$, or $M * * M E E *$, or $M * * M * E E$. For each of these three choices, we then need to distinguishably arrange the remaining letters, OFF, in $\binom{3}{2,1}$ ways. So, the number of outcomes in $E \cap A$ is $\#(E \cap A)=3 \times\binom{ 3}{2,1}=9$. We therefore have

$$
P(E \mid A)=\frac{9}{\binom{5}{2,2,1}}
$$

7. You conduct an "experiment" where you continually flip a coin (keeping track of the outcome of each flip) until the either the first heads appears or the coin has been flipped 5 times, at which point you stop.
(a) What is a reasonable sample space for this experiment?

Solution: A reasonable sample space is

$$
\Omega=\{H, T H, T T H, T T T H, T T T T H, T T T T T\}
$$

where each element displays the outcomes of the flips until they stop. For example, TTH represents the first two flips landing tails and the third flip landing heads.
(b) If E is the event that you flip the coin an odd number of times before stopping, describe the event E as a subset of the sample space. (For example: If a sample space is $\{1,2,3\}$ and F is the event that the outcome is even, then the description of F as a subset of $\{1,2,3\}$ is just $F=\{2\}$).

Solution: If we collect together all the elements in Ω which correspond to flipping an odd number of times, we have

$$
E=\{H, T T H, T T T T H, T T T T T\} .
$$

8. There are three urns: Urn A, Urn B, and Urn C. Urn A contains 4 red marbles and 6 blue marbles; Urn B contains 3 red marbles and 7 blue marbles; Urn C has 8 red marbles and 2 blue marbles. You are going to select a random marble from one of the urns; there is a $1 / 2$ probability you will draw the marble from Urn A; there is a $3 / 10$ probabilty you will draw a marble from Urn B; there is a $1 / 5$ probability you will draw the marble from Urn C.
(a) Let R be the event that you select a red marble. Find $P(R)$.

Solution: Let E_{A}, E_{B}, and E_{C} be the events that you draw from Urn A, Urn B, and Urn C, respectively. Note that $\left\{E_{A}, E_{B}, E_{C}\right\}$ is a partition of all possible outcomes. Therefore,

$$
\begin{aligned}
& P(R)=\overbrace{P\left(R \mid E_{A}\right)}^{4 / 10} \overbrace{P\left(E_{A}\right)}^{1 / 2}+\overbrace{P\left(R \mid E_{B}\right)}^{3 / 10} \overbrace{P\left(E_{B}\right)}^{3 / 10}+\overbrace{P\left(R \mid E_{C}\right)} \overbrace{P\left(E_{C}\right)}^{1 / 5} \\
&=\frac{4}{20}+\frac{9}{100}+\frac{8}{50}=\frac{45}{100}
\end{aligned}
$$

(b) Given that the marble you draw is red, what is the probability that you drew the marble from Urn A?

Solution: We want $P\left(E_{A} \mid R\right)$. Using Bayes' formula,

$$
P\left(E_{A} \mid R\right)=\frac{P\left(R \mid E_{A}\right) P\left(E_{A}\right)}{P(R)}=\frac{(4 / 10)(1 / 2)}{45 / 100}=\frac{4}{9}
$$

(where we just plugged in the value for $P(R)$ that we found in part a.)
9. (a) How many distinguishable letter arrangements can be made from the word

BEYONCE

so that the Es are not next to each other?
Solution: Method 1: By the word counting principle, there are $\frac{7!}{2!}$ different distinguishable letter arrangements of BEYONCE. Grouping together both Es, we see there are 6! arrangements which result in the Es landing next to each other. So, the total number of distinguishable arrangements where the Es do not land next to each other is

$$
\frac{7!}{2!}-6!=6!(7 / 2-1)=\frac{3}{2} \cdot 6!=1080
$$

Method 2: If we first remove the Es, there are 5! distinguishable arrangements of the remaining letters BYONC. Then, once we have have the arrangements of those 5 letters, we have $\binom{6}{2}$ placements for the Es where the do not land next to each other:
__B_-_ Y_-O_-_N_- C_-

Therefore there are

$$
5!\binom{6}{2}=1080
$$

distinguishable arrangements where the Es are not next to each other.
(b) (Jay-Z is lending g's...) Jay-Z has $\$ 10$ which he is going to distribute amongst his 3 friends. How many ways can he distribute the money among them if each is to receive at least $\$ 1$? We assume here that he will distribute in dollar increments.

Solution: This is a direct application of finding positive integer solutions, where we are dividing up $n=10$ indistinguishable objects into $k=3$ bins. Therefore, Jay-Z can distribute the money in

$$
\binom{10-1}{3-1}=\binom{9}{2}
$$

ways.
10. An alien classroom has 29 students: 17 glargons and 12 bubuus. A committee of 2 students is to be selected.
(a) For $k=0,1$, or 2 , what is the number of ways to choose this committee if k of the students are to be bubuus? Note: You can either write out for each case $k=0, k=1$, and $k=2$ explicitly, or you can instead just write one general formula in terms of k.
Solution: For $k=0,1,2$ there are $\binom{12}{k}$ ways to pick the k bubuus and $\binom{17}{2-k}$ ways to choose the glargons. Therefore, for each k we have

$$
\binom{17}{2-k}\binom{12}{k}
$$

ways to pick the committee of 2 with k bubuus.
(b) Suppose that each possible committee is equally likely. Let X be (the random variable giving) the number of bubuus selected for the committee. Find the probability mass function p_{X} of X.

Solution: Since each of the $\binom{29}{2}$ possible committees is equally likely, we have that for $k=0,1,2$

$$
\begin{aligned}
p_{X}(k)=P(X=k) & =\frac{\# \text { of ways to pick committee of } 2 \text { with } k \text { bubuus }}{\# \text { of ways to pick committee of } 2} \\
& =\frac{\binom{17}{2-k}\binom{12}{k}}{\binom{29}{2}}
\end{aligned}
$$

We could also represent this as a table

k	$p_{X}(k)$
0	$\binom{17}{2} /\binom{29}{2}$
1	$\binom{17}{1}\binom{12}{1} /\binom{29}{2}$
2	$\binom{12}{2} /\binom{29}{2}$

11. You are lost wandering through a desert with no water and you come upon the a lovely sorceress named Beyonce. Beyonce has 3 bottles in a box to her left: Bottle \#1 containing 1 liter of water, bottle \#2 containing 2 liters of water, and bottle \#3 containing 3 liters of water. Beyonce will ask you a first question which you have a 50% chance of getting correct. If you get the answer wrong then she disappears along with all her water bottles and you get nothing. If you get the answer correct, then you are given bottle \#1 and she will ask you a second question which you have a 30% chance of getting correct. If you get the second question wrong then she disappears along with her remaining two bottles (you are left with only bottle \#1 which you won in the first round). If you get the second question correct, then she gives you bottle \#2 (so you now have bottles \#1 and \#2) and asks you a third question which you have a 10% chance of getting correct. If you get the third question wrong, then she disappears and takes the third bottle of water with her (you are left with bottles \#1 and \#2 which you won during the first two rounds). If you get the third question correct, then she gives you bottle \#3 (so you now have bottles \#1, \#2, and \#3) and she vanishes.
(a) Let X be (the random variable giving) the liters of water that you receive in your encounter with Beyonce. What is a good and reasonable state space S_{X} for the random variable X ?

Solution: You have the possibility of getting the first question wrong, which will result in you receiving 0 liters of water. If you get the first question correct but miss the next you will have received 1 liter of water. If you get the first two questions correct but miss the third, then you will have 1 liter from the first bottle and 2 more from the second resulting in a total of 3 liters of water. Finally, if you get all questions correct, you will have 1 liter from the first bottle, 2 from the second, and 3 from the third, totaling 6 liters of water. So, a good and reasonable state space for X (which outputs the liters of water you receive) is

$$
S_{X}=\{0,1,3,6\}
$$

(b) Let E be the event that you received bottles $\# 1$ and $\# 2$, but not bottle $\# 3$. Find $P(E)$.

Solution: Let R_{i} be the event that you received bottle i (for $i=1,2,3$). Then what we want is

$$
P\left(R_{1} \cap R_{2} \cap R_{3}^{c}\right) .
$$

We must use the multiplication rule here since R_{1}, R_{2}, and R_{3} are certainly not independent. Hence

$$
P\left(R_{1} \cap R_{2} \cap R_{3}^{c}\right)=\overbrace{P\left(R_{1}\right)}^{.5} \overbrace{P\left(R_{2} \mid R_{1}\right)}^{.3} \overbrace{P\left(R_{3}^{c} \mid R_{2} \cap R_{1}\right)}^{(1-.1)}=(.5)(.3)(.9)=.135
$$

(c) Let k be the value in the state space S_{X} such that $\{X=k\}$ is the same event as E (where X and E are the same as the in the previous two parts). What is k ?
Solution: We receive 3 liters of water if event E occurs. So $k=3$ is the value we're looking for. That is $E=\{X=3\}$.
12. This probability class has 37 students in it: 24 males, 13 females. The search for Mothman was so successful, I decide to put together another search committee to look for the Skunk Ape (another cryptid rumored to live in the southern parts of the country). I'm going to choose 5
males and 5 females for the search committee. Two male students are feuding and refuse to be on the same search committee.
(a) Selecting from the students in class, how many distinguishable search committees are possible?

Solution: Let's call the two feuding males Joe and Jack. Then either Joe is on the committee (in which case Jack is not), or Joe is not on the committee. If Joe is on the committee, then there are 22 remaining males not including Jack from which I must choose 4. If Joe is not on the committee, then there are 23 remaining males from which I must choose 5. In either case, I must choose 5 females from the 13. Therefore there are

$$
\overbrace{\binom{22}{4}\binom{13}{5}}^{\text {Joe on committee }}+\overbrace{\binom{23}{5}\binom{13}{5}}^{\text {Joe not on committee }}=52720668
$$

ways to create this committee.
(b) Selecting from the students in class, how many distinguishable search committees are possible if, once I've selected the students to form the committee, I'm going to select two of the males and two of the females on the committee to be leaders, while the other six will be followers? Note: the feuding parties still refuse to be on the same search committee no matter what position they have.

Solution: From the last part I have $\binom{22}{4}\binom{13}{5}+\binom{23}{5}\binom{13}{5}$ ways to choose the ten students to create the committee. Once the students are chosen, we have $\binom{5}{2}$ ways to select which two males who will be leaders and $\binom{5}{2}$ ways to select which two females who will be leaders. This means for a given committee, I have $\binom{5}{2}\binom{5}{2}=\binom{5}{2}^{2}=100$ ways to organize the committee into distinguishable leader/follower groupings. Hence, the number of distinguishable search committees is

$$
\left[\binom{22}{4}\binom{13}{5}+\binom{23}{5}\binom{13}{5}\right]\binom{5}{2}^{2}=5272066800
$$

13. Little Red is trying to get to her grandmother's house, but the Wolf is trying to stop her! To get to her grandmother's house, Little Red walks down a road until the road splits. The split forces her to either go left or right. If she goes to the left she must independently find either a cloak of invisibility or a sword (or both) to get past the Wolf and get to her grandmother's house. If she goes right she must find the Wolf-Off! spray to get past the Wolf and get to her grandmother's house.
Assume that Little Red has a probability p_{L} of going left at the split in the road, and p_{R} of going right. Given that Little Red goes left at the split, she has a probability p_{C} to find the cloak of invisibility and probability p_{S} to find the sword. Given that she goes right at the split, then she has a probability of p_{W} of finding the Wolf-Off! spray.
Question: What is the probability that Little Red makes it to her grandmother's house?

Solution: Let G be the event that Little Red makes it to her grandmother's house. Let L be the event that she goes left at the fork, and R be the event that she goes right at the fork. Suppose that Little Red goes left. Let C be the event that Little Red finds the invisibility cloak, let S be the event that she finds the sword. Then,

$$
\begin{aligned}
\overbrace{P(G \mid L)}^{\text {Red makes it going left }} & =\overbrace{P(C \cup S \mid L)}^{\text {finds the cloak or sword }} \\
& =P(C \mid L)+P(S \mid L)-P(C \cap S \mid L) \text { by inclusion-exclusion } \\
& =P(C \mid L)+P(S \mid L)-P(C \mid L) P(S \mid L) \text { by independence } \\
& =p_{C}+p_{S}-p_{C} p_{S} .
\end{aligned}
$$

That is to say, given that Little Red goes left, the probability she makes it to her grandmother's house is $p_{C}+p_{S}-p_{C} p_{S}$.
Otherwise, suppose she goes right. Let W be the event that she finds the Wolf-Off. Then,

$$
\underbrace{P(G \mid R)}_{\text {makes it going right }}=\underbrace{P(W \mid R)}_{\text {finds the Wolf-Off }}=p_{W} \text {. }
$$

Therefore,

$$
P(G)=P(G \mid L) P(L)+P(G \mid R) P(R)=\left(p_{C}+p_{S}-p_{C} p_{S}\right) p_{L}+p_{W} p_{R} .
$$

14. The following parts refer to the letters: LAMEFIREALARM. Recall that "word" means distinguishable letter arrangements.
(a) How many words can be made with the above letters such that the M's are not next to each other?

Solution: There are 13 total letters: 2 L's, 3 A's, 2 M's, 2 E's, 1 F, 1 I, and 2 R's. Using the word counting principle, this means there are

$$
\binom{13}{2,3,2,2,1,1,2}=\binom{13}{3,2,2,2,2}=\frac{13!}{3!2!2!2!2!}=64864800
$$

total possible words. Of these, by grouping together the 2 M 's, we see there are

$$
\binom{12}{2,3,1,2,1,1,2}=\binom{12}{3,2,2,2}=\frac{12!}{3!2!2!2!}=9979200
$$

words in which both M's are next to each other. Therefore there are

$$
\binom{13}{3,2,2,2,2}-\binom{12}{3,2,2,2}=54885600
$$

words in which the M's are not next to each other.
(b) What is the probability that, given a random word made from the letters above, the M's will be separated by at least two letters?

Solution: We will start similar to the last part, where we will find the total number of words where the M's are separated by at least two letters by taking the total number of words and subtracting off the number of words where the M's are together and also subtracting off the number of words where the M's are separated by 1 letter. To find the number of words where the M's are separated by 1 letter, notice that if we fix the position of the M's, there are $\binom{11}{3,2,2,2}$ distinguishable arrangements of the other 11 letters. There are 11 different possible positions for the M's such that they are separated by exactly one letter, so there are a total of $11 \times\binom{ 11}{3,2,2,2}$ words where the M's are exactly 1 letter apart. Hence the number of words where the M's are at least two letters apart is:

$$
\overbrace{\underbrace{\binom{13}{3,2,2,2,2}}_{\text {from part (a) }}-\overbrace{\binom{12}{3,2,2,2}}^{\text {all words }}-\overbrace{11 \times\binom{ 11}{3,2,2,2}}^{\text {M's together }}=45738000 .{ }^{\text {w's separated by } 1 \text { letter }}}=4
$$

We now only need to divide this by the total number of words to get the probability:

$$
\left.\frac{\binom{13}{3,2,2,2,2}-\binom{12}{3,2,2,2}-11 \times\binom{ 11}{3,2,2,2}}{(3,2,2,2,2}\right)=\frac{55}{78} \approx 70.5 \%
$$

Note: Let's make sure I'm clear about how the counting went in this part. To find the number of words where the M's were separated by exactly one letter, here is the idea: Let * represent the non-M letters. Then the words must look like:

$$
11 \text { positions for the } 2 \mathrm{M's}=\left\{\begin{array}{l}
\underline{M} \underline{*} \underline{M} \underline{*} \neq * * * * * * * * * \\
\underline{*} \underline{M} \underline{m} \underline{M} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \\
\vdots \\
\underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{*} \underline{M} \underline{*} \underline{M}
\end{array}\right.
$$

However, once we fix where the two M's are, the other 11 letters (represented above by *) can be rearranged in $\binom{11}{3,2,2,2}$ distinguishable ways by the word counting principle. The principle of counting then says there are $11 \times\binom{ 11}{3,2,2,2}$ total such words.
15. Suppose you shuffle together two standard 52 card decks (effectively, you double the number of each card). You are randomly dealt a 5 card poker hand. Let X be the random variable counting the number of 2's in your hand.
(a) What is the state space S_{X} of X ?

Solution: Since there are eight 2's now, we can have anywhere from 0 to 5 in our hand. So,

$$
S_{X}=\{0,1,2,3,4,5\}
$$

(b) What is the probability mass function p_{X} of X ? That is, find $p_{X}(k)=P(X=k)$ for k in S_{X}.

Solution: For each k in S_{X}, we have $\binom{8}{k}$ ways to choose the 2 's that go in our hand, $\binom{96}{5-k}$ choices for the other non-2's that go in our hand. There are a total of $\binom{104}{5}$ poker hands from the doubled deck so,

$$
p_{X}(k)=P(X=k)=\frac{\binom{8}{k}\binom{96}{5-k}}{\binom{104}{5}}
$$

(c) What is the value of the distribution F_{X} of X at 5.1? That is, find $F_{X}(5.1)=P(X \leq 5.1)$.

Solution: Since the maximum value of X is 5 , the probability that $X \leq 5.1$ (or any number ≥ 5 in fact!) is 1 . In other words,

$$
F_{X}(5.1)=P(X \leq 5.1)=1
$$

16. Marble 1, marble 2, and marble 3 are in an urn. You select one of the three marbles out of the urn in such a way that you have a 40% chance of selecting marble 1, a 50% chance of selecting marble 2 , and a measly 10% chance of selecting marble 3. After you've selected the marble you then roll fair dice in the following way: if you selected marble 1, you roll one fair die; if you selected marble 2 , you roll two fair dice; if you selected marble 3 , you roll three fair dice. Given that the sum of the outcomes of the dice you roll is 3 , what is the probability that you selected marble 2? (To make sure we're clear: If you roll three dice and the outcomes are i, j, and k, then the sum of the outcomes is $i+j+k$. If you roll two dice and the outcomes are i and j, then the sum of the outcomes is $i+j$. If you roll one die and the outcome is i, then the sum of the outcomes is i.)

Solution: Let M_{i} be the event that you selected the $i^{\text {th }}$ marble ($i=1,2,3$) and let T be the event that the sum of the outcomes you rolled is 3 . We want to find $P\left(M_{2} \mid T\right)$; we will use Bayes' theorem to do so. We can easily find $P\left(T \mid M_{1}\right)=1 / 6$ since we have a $1 / 6$ probability of rolling 3 with one die. Similarly $P\left(T \mid M_{2}\right)=2 / 6^{2}=2 / 36$ since there are 2 out of 36 possible outcomes of rolling 2 dice where the sum is 3 (the outcome $(1,2)$ or $(2,1)$). Also $P\left(T \mid M_{3}\right)=1 / 6^{3}=1 / 216$ since there is only 1 out of the 216 possible outcomes of rolling 3 dice where the sum is 3 (the outcome ($1,1,1$)). Hence,

$$
\begin{aligned}
P\left(M_{2} \mid T\right) & =\frac{P\left(T \mid M_{2}\right) P\left(M_{2}\right)}{P\left(T \mid M_{1}\right) P\left(M_{1}\right)+P\left(T \mid M_{2}\right) P\left(M_{2}\right)+P\left(T \mid M_{3}\right) P\left(M_{3}\right)} \text { by Bayes' } \\
& =\frac{(2 / 36)(.5)}{(1 / 6)(.4)+(2 / 36)(.5)+(1 / 216)(.1)}=\frac{12}{41} \approx 29.3 \%
\end{aligned}
$$

