PROBABILITY

Math 3160Q - Spring 2015
Professor Hohn

Exercises that are fair game for Thursdays quizzes/exams.
Quiz 1 - Thursday, January 22

- No exercises.

Quiz 2 - Thursday, January 29

- Chapter 1: Problems (pg 15ff): 8, 10, 11, 13, 16, 18, 25, 27, 28, 30
- Chapter 1: Theoretical Exercises (pg 17ff): 8 (see note below), 13, 16, 17 (see note below)
- Note: For theoretical exercise \#8, interpret "prove" as "give a convincing argument." For theoretical exercise \#17, interpret "combinatorial argument" as "explain why you expect this to be true by a counting example, rather than just the mathematical algebra."

Quiz 3 - Thursday, February 12

- Chapter 2: Problems (pg 48ff): 2, 4, 8, 9, 12, 15, 19, 23, 25, 31, 36, 38, 41, 43, 45
- Chapter 2: Theoretical Exercises (pg 52ff): 9, 11, 13

Quiz 4 - Thursday, February 19

- Chapter 3: Problems (pg 97ff): 1, 4, 5, 11, 14, 17, 24, 27, 29, 32, 39, 40, 44
- Chapter 3: Theoretical Exercises (pg. 106ff): 2, 5

Exam 1 - Thursday, February 26

- Chapter 3: Problems (pg 97ff): 41, 51, 53, 54, 66, 70, 81
- Chapter 4: Problems (pg. 163ff): 1, 2, 5 (see note below), 7 (see note below), 13
- Note: For \#5 and \#7, when the book says, "what are the possible outcomes..." for a particular random variable, I want you to read it as, "what is the state space of ..." that particular random variable.

Exam 1 Study Guide/Tips: All questions listed above are fair game. In addition, any quiz, worksheet, or example problem has a chance of being on the exam. I also strongly suggest you work through the review questions at the end of each chapter as well.

Quiz 5 - Thursday, March 5

- Chapter 4: Problems (pg 163ff): 17, 18, 19, 20(a), 20(b), 40 (see note below), 60
- Note: For \#40, you can likely answer this without the "technology" of random variables; however, try and use the random variable technology to get used to it. In particular, if X is the (random variable giving the) number of correct answers the student gets while guessing, then convince yourself that $X \stackrel{d}{=} \operatorname{Bin}(n, p)$ for a good choice of n and a good choice of p.

Quiz 6 - Thursday, March 12

- Chapter 4: Problems (pg 163ff): 20c, 25, 30, 32, 33, 35, 37, 38, 41, 51, 53, 58
- Chapter 4: Theoretical Exercises (pg. 169ff): 3, 6, 19
- Not from Ross:

1. Let X be a random variable with CDF given by

$$
F_{X}(t)= \begin{cases}0 & t<-1 \\ \frac{1}{2} & -1 \leq t<1 \\ \frac{1}{2} t & 1 \leq t<2 \\ 1 & t \geq 2\end{cases}
$$

Calculate $\mathbb{E}[X]$.
2. Suppose that the number of earthquakes per year in a certain region in the US is wellmodeled by a Poisson random variable with an average of 3 earthquakes occurring per year. Calculate the probability that in a given year there are at least 4 earthquakes in this region, given that there are at least 2 earthquakes.

Quiz 7 - Thursday, March 26

- Chapter 4: Problems (pg 163ff): 52, 54, 55, 57, 72, 79
- Chapter 4: Theoretical Exercises (pg. 169ff): 20
- Chapter 5: Problems (pg 212ff): $1,2,3,4,7,10,11,12,13$
- Not from Ross:

1. Let $X \stackrel{d}{=} \operatorname{Bin}(4,1 / 3)$. What is $P\left(X^{2}+X \geq 1\right)$?
2. Let $X \stackrel{d}{=} \operatorname{Bin}(4,1 / 3)$ and $Y \stackrel{d}{=} \operatorname{Geom}(1 / 2)$. For each choice of Z, find the state space S_{Z} of Z and calculate $\mathbb{E}[Z]$:
(a) $Z=Y-X$.
(b) $Z=X^{2}+3 Y$.

Quiz 8 - Thursday, April 2

- Chapter 5: Problems (pg 212ff): 15 (see note below), 17, 18 (see note below), 19 (see note below), 21 (see note below), 23, 25, 26, 27, 28, 32, 33, 40, 41
- Chapter 5: Theoretical Exercises (pg 214ff): 1, 9 (see note below), 10, 15, 31
- Not from Ross:

1. Use the differentiation trick

$$
\int_{0}^{\infty} t^{n} e^{-\lambda t} d t=(-1)^{n}\left(\frac{\partial}{\partial \lambda}\right)^{n} \int_{0}^{\infty} e^{-\lambda t} d t
$$

to find a general formula (depending on n) for $\int_{0}^{\infty} t^{n} e^{-\lambda t} d t$. Note that $\left(\frac{\partial}{\partial \lambda}\right)^{n}$ is just notation meaning the nth derivative with respect to λ; another way this is commonly written is $\frac{\partial^{n}}{\partial \lambda^{n}}$. Use this to find $\mathbb{E}\left[X^{5}\right]$ where $X \stackrel{d}{=} \operatorname{Exp}(2)$.
2. Recall that we showed in class

$$
\int_{-\infty}^{\infty} e^{-t^{2} / 2} d t=\sqrt{2 \pi}
$$

Use the same idea to show that

$$
\int_{-\infty}^{\infty} e^{-\alpha t^{2}} d t=\sqrt{\frac{\pi}{\alpha}}
$$

3. Use the differentiation trick

$$
\int_{-\infty}^{\infty} t^{2 n} e^{-\alpha t^{2}} d t=(-1)^{n}\left(\frac{\partial}{\partial \alpha}\right)^{n} \int_{-\infty}^{\infty} e^{-\alpha t^{2}} d t
$$

to find a general formula (depending on n) for $\int_{-\infty}^{\infty} t^{2 n} e^{-\alpha t^{2}} d t$. Note that $\left(\frac{\partial}{\partial \alpha}\right)^{n}$ is just notation meaning the nth derivative with respect to α; another way this is commonly written is $\frac{\partial^{n}}{\partial \alpha^{n}}$. Use this to find $\mathbb{E}\left[Z^{4}\right]$ where Z is a standard normal random variable.

Notational Hint: Notice that if you multiply together all the odd numbers $1 \cdot 3 \cdot 5 \cdots(2 N-1)$, you can rewrite this as $\prod_{k=0}^{N-1}(1+2 k)$. However, there is also a commonly accepted "double factorial" notation $(2 N-1)$!! which means exactly the product of all the positive odd numbers up to $2 N-1$ (the double factorial also works for even numbers if the number you write the double factorial against is even). So,

$$
1 \cdot 3 \cdot 5 \cdots(2 N-1)=\prod_{k=0}^{N-1}(1+2 k)=(2 N-1)!!
$$

- Note:
- For both \#15 and \#17, leave your answer in terms of Φ. For the second question in $\# 21$, it is asking for you to condition on the event that the height is ≥ 6 feet.
- The CDF Φ of a standard normal random variable is invertible on the range $(0,1)$. That is, if for some $0<y<1$ you have an expression of the form $\Phi(x)=y$, you can solve for x by $x=\Phi^{-1}(y)$ (where Φ^{-1} is the inverse of Φ, not $1 / \Phi$). Therefore, if you don't want to use the table of values for Problems \#18 and \#19, you can leave your answer in terms of the inverse Φ^{-1}.
- For Theoretical Exercise \#9, when the book says "show," what I want you to do is to draw a sketch of the density of Z and convince yourself that the equalities are true by shading in the appropriate areas.

Exam 2 - Thursday, April 9

- Chapter 6: Problems (pg 271ff): 2, 4,
- Do all of Exam 2 Practice Problems

Exam 2 Study Guide/Tips: All questions listed above are fair game. In addition, any quiz, worksheet, or example problem has a chance of being on the exam. I also strongly suggest you work through the review questions at the end of each chapter as well.

Quiz 9 - Thursday, April 16

- No new exercises: Exam recovery!
- Chapter 6: Problems (pg 271ff): 2, 4,

Quiz 10 - Thursday, April 23

- Chapter 6: Problems (pg 271ff): $8,9,10,13,14,15,20,23,26,27$
- Not from Ross:

1. Suppose that X and Y are jointly distributed and discrete with joint mass function

$$
p_{X, Y}(s, t)= \begin{cases}c(s+t) & s \in\{2,3,4,5\}, t \in\{1, \ldots, s\} \\ 0 & \text { otherwise }\end{cases}
$$

Find c and justify whether or not X and Y are independent.
Quiz 11 - Thursday, April 30

- Chapter 6: Problems (pg 271ff): $28,38,45,56$
- Chapter 7: Problems (pg 352ff): 4, 12, 16, 30, 37, 45, 75
- Chapter 7: Theoretical Exercises (pg 359ff): 19
- Not from Ross: All exercises in the Covariance and Correlation Notes

Final Exam

- Chapter 8: Problems (pg 390ff): $3,4 \mathrm{~b}, 14,15$
- Chapter 4: Problems (pg 163ff): 70
- Do all of Final Exam Practice Problems

Final Exam Study Guide/Tips: All questions listed above are fair game. In addition, any quiz, worksheet, or example problem has a chance of being on the exam. I also strongly suggest you work through the review questions at the end of each chapter as well.

