1. $<,>$, or $=$.
(a) $\tan \left(100^{\circ}\right) \quad \tan \left(1^{\circ}\right)$
(b) The solution x of $\log _{\sqrt{8}} x=\frac{8}{3}$
(c) The period of the function $f(x)=3 \sin (\pi x-5)+7 \quad$ The amplitude of the function $f(x)=3 \sin (\pi x-5)+7$
(d) $3 \log _{2} 3 \quad 2 \log _{5} 6$
(e) The period of $f(x)=4 \tan (3 x) \quad$ The period of $g(x)=4 \cos (3 x)$
2. Find all solutions to $\sin (2 x)+\cos x=0$ on the interval $[0,2 \pi)$.
3. Give an example of a function that is neither even nor odd, and explain why it is neither.
4. Find the first term of a geometric sequence whose second term is 8 and whose fifth term is 27 .
5. Where is the function $f(x)=\frac{\sqrt{\sin x}}{x^{2}-4 x+3}$ defined on the interval $[0,2 \pi]$? Write your answer as a union of intervals.
6. Find the fifth term of the recursive sequence defined by the equations $a_{1}=2$ and $a_{n+1}=\frac{1}{a_{n}+1}$.
7. Find an exact expression for $\sin \left(75^{\circ}\right)$.
8. Find all real numbers x such that $12 x^{4}+5 x^{2}-2=0$.
9. Find the domain and range of $f(x)=\log (-x)$. What is the inverse function of $f(x)$? Find the domain and range of the inverse function of $f(x)$.
10. Prove the following identity

$$
\sin \theta \cos \theta=\frac{\tan \theta}{1+\tan ^{2} \theta} .
$$

11. Find the linear function, $y=m x+b$, that passes through the vertices of $y=x^{2}+4 x$ and $y=2(x+1)^{2}$.
12. A population of 8 frogs increases at an annual rate of 50% a year. How many frogs will there be in 4 years?
13. Suppose $\sin u=\frac{3}{7}$. Evaluate $\cos (2 u)$.
14. Suppose $9^{x}=4$. Evaluate $\left(\frac{1}{27}\right)^{2 x}$.
15. The function f is defined by $f(-3)=8, f(1)=4$, and $f(4)=-8$. Make a table for $g(x)$ where $g(x)=2 f(-5 x+1)-3$.
16. What is $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$?
17. Find a number t such that the equation $x^{2}+8 x+t=0$ has exactly one solution.
18. What is the minimum value of the function f defined by $f(x)=9 x^{2}+30 x+18$?
19. Find an exact expression for $\sin \left(\frac{\pi}{16}\right)$.
20. Evaluate $\sum_{j=1}^{22}(-5)^{j}$.
21. Write $2^{8} \frac{4^{77}}{16^{28}}$ as a power of 4 .
22. Find the smallest possible positive number x such that $16 \sin ^{4} x-16 \sin ^{2} x+3=0$.
23. Let $f(x)=\frac{x^{4}-2 x^{2}-35}{2 x^{4}-8}$. Find the vertical and horizontal asymptotes of $f(x)$. What are the zeros of f ?
24. Write $\frac{3+5 i}{(1-3 i)^{2}}$ in $a+b i$ form.
25. Give an example of an odd function whose domain is the real numbers and whose range is $\left\{-\pi^{2}, 0, \pi^{2}\right\}$.
26. Calculate $\log \left(\frac{1}{2}\right)+\log \left(\frac{2}{3}\right)+\ldots+\log \left(\frac{99}{100}\right)$.
27. High tide at La Jolla Cove occurs at 5 am and is 6.5 ft . Low tide occurs at 11 am and is -0.5 ft . A simple model for such tides could be a cosine function of the form $f(x)=a \cos (b x+c)+d$. Determine the values for $a>0, b, c$, and d for $f(x)$ where x represents the number of hours since midnight. Sketch $\mathrm{f}(\mathrm{x})$.
28. Evaluate $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots+\frac{1}{2^{80}}-\frac{1}{2^{81}}$.
29. Evaluate $\cos \left(\tan ^{-1} 5\right)$.
30. Write the series explicitly and evaluate the sum of $\sum_{k=0}^{3} \log \left(k^{2}+2\right)$.
31. Convert the polar coordinates given to rectangular coordinates in the xy-plane.
(a) $r=4, \theta=101 \pi$
(b) $r=6 \pi, \theta=\frac{11 \pi}{4}$
32. Find the first term of a geometric sequence whose second term is 6 and whose fifth term is 162 .
33. Simplify each of the following expressions.
(a) $\sin ^{-1}\left(\cos \left(\frac{5 \pi}{6}\right)\right)$
(b) $\sin \left(\cos ^{-1} x\right)$
34. Solve for x in the following equations.
(a) $\log _{4} x+\log _{4}(x-3)=1$
(b) $e^{x}+2 e^{-x}=3$
35. Each year the local country club sponsors a tennis tournamennt. Play starts with 128 participants. During each round, half of the players are eliminated. How many players remain after 5 rounds?
36. Show that $\sin ^{2}(2 x)=4\left(\sin ^{2} x-\sin ^{4} x\right)$.
37. Compute the sum of the first 20 terms of the sequence whose $n^{t h}$ term is given by $a_{n}=3+2(n-1)$.
38. Sketch the graph of the function $4 \sin (2 x+1)+5$ on the interval $[-3 \pi, 3 \pi]$.
39. Let $f(x)=\frac{6 x+1}{5 x-9}$.
(a) Find the domain of f.
(b) Find the range of f.
(c) Find a formula for f^{-1}.
(d) Find the domain of f^{-1}.
(e) Find the range of f^{-1}.
40. Evaluate $\sum_{m=2}^{\infty} \frac{5}{6^{m}}$.
41. Simplify the expression $\left(\frac{\left(3 t^{9} w^{-5}\right)^{4}}{\left(t^{-3} w^{7}\right)^{5}}\right)^{-2}$.
42. Suppose you go to the fair and decide to ride the Ferris Wheel. The Ferris Wheel has a 30 meter diameter and turns 3 revolutions per minute with its lowest point 1 meter off the ground. Assume your height h above the ground is a function of the form $h(x)=a \cos (b x+c)+d$, where $x=0$ represents the lowest point on the wheel and x is measured in seconds. Find the values of $a>0, b>0, c$, and d, and sketch $h(x)$.
43. Show that $2-\log x=\log \left(\frac{100}{x}\right)$ for every positive x.
44. About how many years does it take for $\$ 600$ to become $\$ 1800$ when compounded continuously at 8% per year?
45. Suppose $\frac{\pi}{2}<\theta<\pi$ and $\tan \theta=-4$. Evaluate
(a) $\cos \theta$
(b) $\sin \theta$
46. Find exact values for the following
(a) $\sin \left(-\frac{3 \pi}{2}\right)$
(b) $\cos \frac{15 \pi}{4}$
(c) $\cos 360045^{\circ}$
(d) $\sin 300^{\circ}$
47. Use the figure to the right to solve the following:

Suppose $a=3$ and $c=8$. Evaluate
(a) $\cos v$
(b) $\sin v$
(c) $\tan v$

48. Evaluate $\cos \left(\cos ^{-1} \frac{2}{5}\right)$.
49. Find a number b such that $\cos x+\sin x=b \sin \left(x+\frac{\pi}{4}\right)$.
50. Show that $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$ for every x that is not an integer multiple of π.
51. For $f(x)=\frac{x-1}{x^{2}+1}$ and $g(x)=\frac{x+3}{x+4}$, find the formulas for
(a) $f \circ g$
(b) $g \circ f$

Simplify your results as much as possible.
52. Suppose $g(x)=x^{7}+x^{3}$. Evaluate $\left(g^{-1}(4)\right)^{7}+\left(g^{-1}(4)\right)^{3}+4$.
53. Evaluate the expression $\sin \left[\sec ^{-1}\left(\frac{5}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)\right]$.
54. Find the $100^{\text {th }}$ term of an arithmetic sequence whose tenth term is 5 and whose eleventh term is 8 .
55. Use the figure to the right to solve the following:

Suppose $b=3$ and $\sin v=\frac{1}{3}$. Evaluate a.

56. Evaluate $\lim _{n \rightarrow \infty} \frac{4 n^{2}+1}{3 n^{2}-5 n}$.
57. Let $g(x)$ be of the form $g(x)=a \cos (b x+c)+d$. Find the values for a, b, c, and d with $a>0, b>0$, and $0 \leq c \leq \pi$ so that g has range $[-3,4], g(0)=2$, and g has period 5 .

