1. Suppose f and g are the functions completely defined by the tables below:

x	f(x)	x	g(x)
1	-2	-4	1
-3	1	-2	-3
5	-4	1	5

Make a table of $f \circ g$ and a table of $g \circ f$.

- 2. Let $f(x) = \frac{7x+8}{x+4}$.
 - (a) Find the domain of f.
 - (b) Find the range of f.
 - (c) Find a formula for f^{-1} .
 - (d) Find the domain of f^{-1} .
 - (e) Find the range of f^{-1} .
- 3. Find the maximum value of $5 8x 2x^2$.

4. Write
$$\frac{27^{100}}{9^{45}}$$
 as a power of 3.

- 5. Give an example of a function that is neither even nor odd, and explain why it is neither.
- 6. Find a number t such that the line containing the points (t, -5) and (-3, 5) is perpendicular to the line that contains the points (-5, 7) and (1, 11).
- 7. Find a number t such that the equation $x^2 + tx + 3 = 0$ has exactly one solution.
- 8. Suppose $g(x) = 3 + \frac{x}{5x-2}$. Find the formula for g^{-1} .
- 9. What is the minimum value of the function f defined by $f(x) = 4x^2 8x + 11$? The graph of f is a parabola. Find the vertex of the parabola.
- 10. Let f(-1) = 10, f(2) = 4, and f(3) = 2. Make a table for g(x) where g(x) = 5f(3x+2) 1. Find the domain and range of g(x).
- 11. Show that for every real number t, the point (5 3t, 7 4t) is on the line containing the points (2, 3) and (5, 7).
- 12. Simplify $\left(\frac{xy^{-3}}{x^5y^{-10}z^3}\right)^{-3}$.
- 13. Find all real numbers x such that $2x^4 20x^2 22 = 0$.

14. Let $f(x) = \frac{3x^2 + 5x + 1}{2x^2 - 4x + 2}$. Find the horizontal and vertical asymptotes and zeros of f(x).

- 15. Find two postive numbers whose difference equals 4 and whose product equals 15.
- 16. Write $\frac{(1+3i)^2}{5-2i}$ in a+bi form.

17. Simplify the expression $\left(\frac{(t^3w^5)^{-3}}{(t^{-3}w^2)^4}\right)^{-2}$.

18. Suppose f is a function with domain [1,3] and range [2,5]. Define functions g and h by

$$g(x) = 4f(x)$$
 and $h(x) = f(3x)$.

- (a) What is the domain of g?
- (b) What is the range of g?
- (c) What is the domain of h?
- (d) What is the range of h?

19. Fill in the blank.

- (a) Let f(x) be a function and x be in the domain of f. Then $f^{-1}(f(x)) =$ _____.
- (b) The equation of the graph g(x) that is obtained by horizontally stretching the graph of f(x) 5 units and by shifting down 7 units is

(c) The degree of the polynomial $p(x) = 4 + 6x^5 + 3x^2$ is _____.

- (d) The function $g(x) = 3x^3 + x$ is a function that is even, odd, or neither _____.
- (e) An example of a polynomial of degree four whose only zeros are -3, 4, and 1 is