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Unit 2 Summary 

 
You need to know the Boltzmann equation in terms of probability and fractional 
occupancy in a two level system. In general, the Boltzmann equation gives the 
probability, Pj, that a randomly chosen system (from an ensemble of systems in 
thermal contact) will be in state j with energy Ej(N,V): 
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indistinguishable particles. 
 
For the two-level system: 
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You should be able to obtain partition functions for simple energy level systems.  
 
 
The Boltzmann equation seeks to find the maximum number of configurations. 
For a system with large N, there is a configuration with so great a weight that is 
overwhelms the rest. The system will almost always be found in it, and it will 
determine the properties of the system. The Boltzmann equation gives the 
probability of realizing this configuration as a function of energy and 
temperature.  
 
Energy can be evaluated form the partition function: 
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For the atom/molecule: 
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εNE = , and for 1 mol: UNE A == ε  
 

 

and so we see that 
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Heat capacity and pressure can also be evaluated from the partition function: 
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You should be able to calculate any of these properties for any partition function 
I give you. Here follows some results for a diatomic molecule. You should 
understand (and derive completely) how these results were obtained. 
 

The translational partition function (3D):  ( ) V
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The rotational partition function (large T): ( ) 2
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The vibrational partition function:  ( ) T/

T2/

vib
vib

vib

e1
eTq Θ

Θ

−

−

−
=  

 
The vibrational partition function depends on 
how we define the zero of energy. If we define it 
as the bottom of the internuclear potential, we 
obtain the above expression. However if we 
define zero as the v = 0 state, then we obtain the 
following expression: 
 
 

( ) Tvib vibe
Tq /1

1
Θ−−

=  

  
 

1/2hν 
E = 0 

E = 0 for v = 0 
v = 1 

v = 2 

εe1 = -De

εe2 



 3

The expression for the rotational partition function above works for high 
temperatures. Room temperature measurements have to calculated numerically 
using the following equation. 
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From these partition functions the following can be obtained. 
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Total internal energy is the sum of the individual internal energies and total heat 
capacity is the sum of the individual heat capacities. Note, we have ignored the 
electronic contribution. 
 
Note  ( ) elecvibrottrans qqqqT,Vq =    and  elecvibrottranstotal εεεεε +++=  
 
 

WORK, ENERGY & HEAT 
 

Work is the transfer of energy due to unbalanced forces:  VPw extΔ−=  

If Pext is not constant during the process:    dVPw f
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For a reversible process (compression or expansion of an ideal gas): 
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The first law of thermodynamics: 
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Some important processes:  
 
ISOLATED SYSTEM:   0U,0w,0q === Δ  
 
ISOTHERMAL (no change in T):  0U =Δ  
      0T =Δ  
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PRESSURE-VOLUME WORK:  VqU =Δ  (constant volume) 
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The temperature of a gas decreases in a reversible adiabatic expansion:  
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ENTHAPLY 

 
At constant pressure: VPUH ΔΔΔ += , and HqP Δ=  
 
To calculate the enthalpy from T = 0K to T = T, must take into account any phase 
transitions. 
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Make sure you know how to calculate enthalpy changes for chemical reactions. 
You can use Hess’s law and enthalpies of formation to calculate enthalpies of 
reaction. Know how to calculate enthalpy changes at different temperatures 
using the following equation: 
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ENTROPY 
 

Entropy (state function): 
T

q
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0dS =  Equilibrium (reversible process) 
    0dS >  Spontaneous process in isolated system 

Know the Second Law. 
 

Isothermal expansion: 
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The Third Law: Every substance has finite positive entropy, but at 0 K the 
entropy may become 0, and does so in the case of a perfectly crystalline 
substance. 
 
Determining absolute entropies from calorimetric data: 
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These entropies are usually called “calorimetric entropies.” Note we have 
assumed the Third Law holds true for calorimetric entropies.  
 
Statistical Entropy:  WlnkS B=  
     
From partition functions:
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Note that the above expression relates entropy to the system partition function 
(Q) and the molecular partition function (q). Make sure you know how to go 
from the expression for system Q to molecular q, using Stirling’s approximation 
(lnN! = NlnN – N). 
 

The molar entropy of an ideal monoatomic gas: 
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The molar entropy of a diatomic gas is given by:  
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You should be able to derive entropy expressions using simple partition 
functions. You should be able to determine entropies of monoatomic and 
diatomic molecules from spectroscopic parameters. The entropies are generally 
called “statistical entropies.” 
 
We have assumed the Third Law holds perfectly when calculating calorimetric 
entropies, i.e. ΔS = 0 at T = 0 K. Spectroscopic entropies are therefore more 
accurate. Realize that at 0 K some molecules (usually those possessing small 
dipoles) may get “locked” into two or more possible degenerate states, e.g. CO 
and linear NNO, W = 2; CH3D, W = 4. You should be able to calculate residual 
entropies, and add the values to the calorimetric values to get entropies in closer 
agreement to statistical ones. 
 

PREDICTING SPONTANEOUS PROCESSES 
 
Helmholtz Energy:  0STUA ≤−= ΔΔΔ   For constant T and V 
    0A <Δ  Spontaneous (irreversible) 
    0A >Δ  Not spontaneous 
    0A =Δ  Equilibrium 
 
Gibbs Energy:  STHG ΔΔΔ −=   For constant T and P  
    0G <Δ  Spontaneous (irreversible) 
    0G >Δ  Not spontaneous 
    0G =Δ  Equilibrium 
 
Be aware that the Maxwell relations allow us to derive some important 
thermodynamic equations. Two important ones are the temperature and the 
pressure dependency of the Gibbs energy. 
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Other important ones are: P
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At P1 = 1 bar ( ) ( ) PlnRTTGP,TG o += , where ( )TG o  = standard molar Gibbs 
energy. 
 

For non-ideal gases ( ) ( ) ( )
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gas. 
Using the virial equation for non-ideality: 
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Note, the fugacity coefficient 
P
f

=γ , and ∫
−

=
P

0
dP

P
1Zlnγ , where 

RT
VPZ =  

(Z = compressibility factor) 
 


