Unit 2 Summary

You need to know the Boltzmann equation in terms of probability and fractional
occupancy in a two level system. In general, the Boltzmann equation gives the
probability, Pj, that a randomly chosen system (from an ensemble of systems in
thermal contact) will be in state j with energy E;j(N, V):
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You should be able to obtain partition functions for simple energy level systems.

The Boltzmann equation seeks to find the maximum number of configurations.
For a system with large N, there is a configuration with so great a weight that is
overwhelms the rest. The system will almost always be found in it, and it will
determine the properties of the system. The Boltzmann equation gives the
probability of realizing this configuration as a function of energy and
temperature.

Energy can be evaluated form the partition function:
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<E>= N<8>, and for 1 mol: <E>= NA<8> =U

and so we see that U = NAkBTZ(aInqj
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Heat capacity and pressure can also be evaluated from the partition function:
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You should be able to calculate any of these properties for any partition function
I give you. Here follows some results for a diatomic molecule. You should
understand (and derive completely) how these results were obtained.
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The translational partition function (3D): Otrans (V T ) = (h—ZB) Vv
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The rotational partition function (large T): Orot (T ) = ﬂh—zB
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The vibrational partition function: Qvib (T ) = W
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The vibrational partition function depends on
how we define the zero of energy. If we define it
as the bottom of the internuclear potential, we
obtain the above expression. However if we
define zero as the v = 0 state, then we obtain the
following expression:
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The expression for the rotational partition function above works for high
temperatures. Room temperature measurements have to calculated numerically
using the following equation.
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From these partition functions the following can be obtained.
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Total internal energy is the sum of the individual internal energies and total heat
capacity is the sum of the individual heat capacities. Note, we have ignored the
electronic contribution.

Note q(V 1l ) = OtransQrotQvibbelec  and  Etotal = Etrans + Erot T Evib + elec

WORK, ENERGY & HEAT
Work is the transfer of energy due to unbalanced forces: W= —Pgy AV
V
If Pext is not constant during the process: W= —J'Vf PoxtdV

For a reversible process (compression or expansion of an ideal gas):
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The first law of thermodynamics: Path & state functions: know the

AU =q+w

difference.



Some important processes:

ISOLATED SYSTEM: q=0, w=0, 4U =0
ISOTHERMAL (no change in T): AU =0
AT =0
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ADIABATIC (no change in q):

PRESSURE-VOLUME WORK: AU =gy (constant volume)

H=U+PV
AH = AU + PAV constant pressure
Qp =4H

The temperature of a gas decreases in a reversible adiabatic expansion:
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ENTHAPLY

At constant pressure: A4H =AU + P4V , and qp = 4H

To calculate the enthalpy from T = 0K to T = T, must take into account any phase
transitions.
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H(T)-H(0)= [ CB(T)T +AsH + [CH(T)T, etc. In other words AH = [CpdT
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Note also that Cp :%, and Cp —Cy =nR

Make sure you know how to calculate enthalpy changes for chemical reactions.
You can use Hess’s law and enthalpies of formation to calculate enthalpies of
reaction. Know how to calculate enthalpy changes at different temperatures
using the following equation:

AH(Ty)= AH(Ty)+ .[TT: [Cp (products)—Cp(react s)|



ENTROPY
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dS =0 Equilibrium (reversible process)
dS >0 Spontaneous process in isolated system

Entropy (state function): dS =

Know the Second Law.

Isothermal expansion: AS =R |n1//_2, For mixing of two gases:
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The Third Law: Every substance has finite positive entropy, but at 0 K the
entropy may become 0, and does so in the case of a perfectly crystalline
substance.

Determining absolute entropies from calorimetric data:
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These entropies are usually called “calorimetric entropies.” Note we have
assumed the Third Law holds true for calorimetric entropies.

Statistical Entropy: S =kgInW

From partition functions:
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Note that the above expression relates entropy to the system partition function
(Q) and the molecular partition function (q). Make sure you know how to go
from the expression for system Q to molecular q, using Stirling’s approximation
(InN! = NInN - N).
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The molar entropy of an ideal monoatomic gas: S = g R+RIn ( 5 N
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The molar entropy of a diatomic gas is given by:
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You should be able to derive entropy expressions using simple partition
functions. You should be able to determine entropies of monoatomic and
diatomic molecules from spectroscopic parameters. The entropies are generally

called “statistical entropies.”

We have assumed the Third Law holds perfectly when calculating calorimetric
entropies, i.e. AS =0 at T = 0 K. Spectroscopic entropies are therefore more
accurate. Realize that at 0 K some molecules (usually those possessing small
dipoles) may get “locked” into two or more possible degenerate states, e.g. CO
and linear NNO, W = 2; CHsD, W = 4. You should be able to calculate residual
entropies, and add the values to the calorimetric values to get entropies in closer
agreement to statistical ones.

PREDICTING SPONTANEOUS PROCESSES

Helmholtz Energy: AA =AU -TAS <0 For constant T and V
AA <0 Spontaneous (irreversible)
AA>0 Not spontaneous
AA=0 Equilibrium

Gibbs Energy: AG =AH -TA4S For constant T and P
4G <0 Spontaneous (irreversible)
4G >0 Not spontaneous
AG =0 Equilibrium

Be aware that the Maxwell relations allow us to derive some important
thermodynamic equations. Two important ones are the temperature and the
pressure dependency of the Gibbs energy.
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Other important ones are: v =—P and | — | =-S so that using cross
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derivatives, we find that (G_Pj = (ﬁj
ot ), \av ),

AtP;=1bar G(T,P)=G°(T)+RTInP, where G°(T) = standard molar Gibbs
energy.

For non-ideal gases G(T,P)=G°(T)+RT In&j—), where f(P,T) = fugacity of
f

gas.

Using the virial equation for non-ideality:
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Note, the fugacity coefficient y =—, and Iny = I—dP , Where Z = —
P 5 P RT
(Z = compressibility factor)



