Unit 2, Homework No. 1: Chemical Equilibria

Date issued: Monday, October 4, 2011. This homework is due on or before October 7, 5:00 pm. Late homework assignments will not be graded. Solutions will be available one day after the due date.

1. At 1565 K, consider the equilibrium constants for the reactions:

(1) $2H_2O(g) \Leftrightarrow 2H_2(g) + O_2(g)$ $K_1 = 1.6 \times 10^{-11}$ (2) $2CO_2(g) \Leftrightarrow 2CO(g) + O_2(g)$ $K_2 = 1.3 \times 10^{-10}$ (3) $CO_2(g) + H_2(g) \Leftrightarrow H_2O(g) + CO(g)$ $K_3 = ?$

(a) What is the equilibrium constant for the reaction (3) at that temperature?

(b) Show that the manner in which equilibrium constants are calculated is consistent with the manner in which the ΔG_r^{o} values are calculated when combining two or more equations by determining ΔG_r^{o} values for (1) and (2) and using those values to calculate the ΔG_r^{o} value and K_3 for reaction (3).

2. The decomposition of ammonium carbamate, NH_2COONH_4 , takes place according to the equation:

$$NH_2COONH_4(s) \rightleftharpoons 2 NH_3(g) + CO_2(g)$$

Show that if all the NH₃(g) and CO₂(g) result from the decomposition of ammonium carbamate, then $K = (4/27)P^3$, where *P* is the total pressure at equilibrium. **Hint**: you can calculate the partial pressure of a component by multiplying the mole fraction of that component by the total vapor pressure.

3. When solid NH₄HS and 0.200 mol of gaseous NH₃ were placed into a 2.0 L vessel at 24 °C, the equilibrium NH₄HS(s) \leftrightarrow NH₃(g) + H₂S(g), for which $K = 1.6 \times 10^{-4}$, was reached. What are the equilibrium concentrations of NH₃ and H₂S?

4. A mixture of 0.0560 mol O_2 and 0.0200 mol N_2O is placed in a 1.00 L reaction vessel at 25 °C. When the reaction 2 $N_2O(g) + 3 O_2(g) \leftrightarrow 4 NO_2(g)$ is at equilibrium, 0.0200 mol NO_2 is present.

(a) What are the equilibrium concentrations?

(b) What is the value of *K*?

5. Calculate the pH of a buffer system containing $0.40 \text{ M CH}_3\text{COOH}$ and $0.55 \text{ M CH}_3\text{COONa}$. What is the pH of the buffer after the addition of 0.10 mole of HCl to 1.0 L of the solution? Assume no change in the volume of the solutions.

6. Phosphate buffers, that is, buffers containing the phosphate group, are present in biological systems such as the blood plasma. Describe how you would prepare a phosphate buffer with a pH of 7.40, assuming ideal behavior.