Complex symmetric partial isometries

Stephan Ramon Garcia ${ }^{\mathrm{a}, 1}$, Warren R. Wogen ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Pomona College, Claremont, CA 91711, USA
${ }^{\text {b }}$ Department of Mathematics, CB \#3250, Phillips Hall, Chapel Hill, NC 27599, USA

Received 7 April 2009; accepted 13 April 2009
Available online 18 April 2009
Communicated by D. Voiculescu

Abstract

An operator $T \in B(\mathcal{H})$ is complex symmetric if there exists a conjugate-linear, isometric involution $C: \mathcal{H} \rightarrow \mathcal{H}$ so that $T=C T^{*} C$. We provide a concrete description of all complex symmetric partial isometries. In particular, we prove that any partial isometry on a Hilbert space of dimension $\leqslant 4$ is complex symmetric.

© 2009 Elsevier Inc. All rights reserved.
Keywords: Complex symmetric operator; Isometry; Partial isometry

1. Introduction

The aim of this note is to complete the classification of complex symmetric partial isometries which was started in [9]. In particular, we give a concrete necessary and sufficient condition for a partial isometry to be a complex symmetric operator.

Before proceeding any further, let us first recall a few definitions. In the following, \mathcal{H} denotes a separable, complex Hilbert space and $B(\mathcal{H})$ denotes the collection of all bounded linear operators on \mathcal{H}.

[^0]Definition. A conjugation is a conjugate-linear operator $C: \mathcal{H} \rightarrow \mathcal{H}$, which is both involutive (i.e., $C^{2}=I$) and isometric (i.e., $\langle C x, C y\rangle=\langle y, x\rangle$).

Definition. We say that $T \in B(\mathcal{H})$ is C-symmetric if $T=C T^{*} C$. We say that T is complex symmetric if there exists a conjugation C with respect to which T is C-symmetric.

It is not hard to see that T is a complex symmetric operator if and only if T is unitarily equivalent to a symmetric matrix with complex entries, regarded as an operator acting on an l^{2}-space of the appropriate dimension (see [4, Sect. 2.4] or [7, Prop. 2]).

One can also easily show that if $\operatorname{dim} \operatorname{ker} T \neq \operatorname{dim} \operatorname{ker} T^{*}$, then T is not a complex symmetric operator. For instance, the unilateral shift is perhaps the most ubiquitous example of a partial isometry which is not complex symmetric (see [7, Prop. 1], [4, Ex. 2.14], [5, Cor. 7]). On the other hand, we have [9, Thm. 4]:

Theorem 1. Let $T \in B(\mathcal{H})$ be a partial isometry.
(i) If $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker} T^{*}=1$, then T is a complex symmetric operator.
(ii) If $\operatorname{dim} \operatorname{ker} T \neq \operatorname{dim} \operatorname{ker} T^{*}$, then T is not a complex symmetric operator.
(iii) If $2 \leqslant \operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker} T^{*} \leqslant \infty$, then either possibility can (and does) occur.

Although these results are the sharpest possible statements that can be made given only the data ($\operatorname{dim} \operatorname{ker} T, \operatorname{dim} \operatorname{ker} T^{*}$), they are in some sense unsatisfactory. While it is known that there exist partial isometries in $B(\mathcal{H})$ that are not complex symmetric whenever $\operatorname{dim} \mathcal{H} \geqslant 5$, it turns out that every partial isometry in $B(\mathcal{H})$ is complex symmetric if $\operatorname{dim} \mathcal{H} \leqslant 3$. The authors were unable to settle the issue in the case $\operatorname{dim} \mathcal{H}=4$. To be more specific, the techniques used in [9] were insufficient to discuss the case $\operatorname{dim} \mathcal{H}=4$ and $\operatorname{dim} \operatorname{ker} T=2$. Significant numerical evidence in favor of the assertion that all partial isometries on a four-dimensional Hilbert space are complex symmetric has recently been produced by J. Tener [11]. Let us now describe our results and the resolution of this problem.

Suppose that T is a partial isometry on \mathcal{H} and let

$$
\begin{equation*}
\mathcal{H}_{1}=(\operatorname{ker} T)^{\perp}=\operatorname{ran} T^{*} \tag{1}
\end{equation*}
$$

denote the initial space of T and $\mathcal{H}_{2}=\left(\mathcal{H}_{1}\right)^{\perp}=\operatorname{ker} T$ denote its orthogonal complement (see [10, Pr. 127] or [3, Ch. VIII, Sect. 3] for terminology). With respect to the orthogonal decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, we have

$$
T=\left(\begin{array}{ll}
A & 0 \tag{2}\\
B & 0
\end{array}\right)
$$

where $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $B: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$. Furthermore, the fact that $T^{*} T$ is the orthogonal projection onto \mathcal{H}_{1} yields the identity

$$
A^{*} A+B^{*} B=I
$$

where I denotes the identity operator on \mathcal{H}_{1}. Finally, observe that the operator $A \in B\left(\mathcal{H}_{1}\right)$ is simply the compression of the partial isometry T to its initial space.

The main result of this note is the following concrete description of complex symmetric partial isometries:

Theorem 2. Let $T \in B(\mathcal{H})$ be a partial isometry. If A denotes the compression of T to its initial space, then T is a complex symmetric operator if and only if A is a complex symmetric operator.

Due to its somewhat lengthy and computational proof, we defer the proof of the preceding theorem until Section 2. We remark that Theorem 2 remains true if one instead considers the final space of T. Indeed, simply apply the theorem with T^{*} in place of T and then take adjoints.

Corollary 1. Every partial isometry of rank $\leqslant 2$ is complex symmetric.
Proof. Let $T \in B(\mathcal{H})$ be a partial isometry such that $\operatorname{rank} T \leqslant 2$. If $\operatorname{rank} T=0$, then $T=0$ and there is nothing to prove. If $\operatorname{rank} T=1$, then we may appeal to [9, Cor. 5], which asserts that every rank-one operator is complex symmetric. If $\operatorname{rank} T=2$, then we may write

$$
T=\left(\begin{array}{ll}
A & 0 \\
B & 0
\end{array}\right)
$$

where A is an operator on a two-dimensional space. Since every operator on a two-dimensional Hilbert space is complex symmetric (see [1, Cor. 3], [2, Cor. 3.3], [7, Ex. 6], [9, Cor. 1], or [11, Cor. 3]), the desired conclusion follows immediately from Theorem 2.

Corollary 2. Every partial isometry on a Hilbert space of dimension $\leqslant 4$ is complex symmetric.
Proof. As mentioned earlier, the results of [9] indicate that only the case $\operatorname{dim} \mathcal{H}=4$ and $\operatorname{dim} \operatorname{ker} T=2$ requires resolution. The corollary is now an immediate consequence of Theorem 2 and the fact that every operator on a two-dimensional Hilbert space is complex symmetric.

We conclude this section with the following theorem, which asserts that each C-symmetric partial isometry can be extended to a C-symmetric unitary operator on the whole space (the significance lies in the fact that the corresponding conjugations for these two operators are the same).

Theorem 3. If T is a C-symmetric partial isometry, then there exists a C-symmetric unitary operator U and an orthogonal projection P such that $T=U P$.

Proof. Since T is a C-symmetric partial isometry, it follows that $|T|=P$ is an orthogonal projection and that $T=C J P$ where J is a partial conjugation supported on $\operatorname{ran} P$ which commutes with $P\left[8\right.$, Sect. 2.2]. We may extend J to a conjugation \widetilde{J} on all of \mathcal{H} by letting $\widetilde{J}=J \oplus J^{\prime}$ where J^{\prime} is any conjugation on ker P. The operator $U=C \widetilde{J}$ is the desired C-symmetric unitary operator.

2. Proof of Theorem 2

This entire section is devoted to the proof of Theorem 2. We first require the following lemma:

Lemma 1. If \mathcal{H}, \mathcal{K} are separable complex Hilbert spaces, then $T \in B(\mathcal{H})$ is a complex symmetric operator if and only if $T \oplus 0 \in B(\mathcal{H} \oplus \mathcal{K})$ is a complex symmetric operator.

Proof. If T is a C-symmetric operator on \mathcal{H}, then it is easily verified that $T \oplus 0$ is $(C \oplus J)$ symmetric on $\mathcal{H} \oplus \mathcal{K}$ for any conjugation J on \mathcal{K}. The other direction is slightly more difficult to prove.

Suppose that $S=T \oplus 0$ is a complex symmetric operator on $\mathcal{H} \oplus \mathcal{K}$. Before proceeding any further, let us remark that it suffices to consider the case where

$$
\begin{equation*}
\mathcal{H}=\overline{\operatorname{ran} T+\operatorname{ran} T^{*}} \tag{3}
\end{equation*}
$$

Otherwise let $\mathcal{H}_{1}=\overline{\operatorname{ran} T+\operatorname{ran} T^{*}}$ and note that \mathcal{H}_{1} is a reducing subspace of T. If \mathcal{H}_{2} denotes the orthogonal complement of \mathcal{H}_{1} in \mathcal{H}, then with respect to the orthogonal decomposition $\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{K}$, the operator S has the form $T^{\prime} \oplus 0 \oplus 0$, where T^{\prime} denotes the restriction of T to \mathcal{H}_{1}. By now considering S with respect to the orthogonal decomposition $\mathcal{H} \oplus \mathcal{K}=\mathcal{H}_{1} \oplus\left(\mathcal{H}_{2} \oplus \mathcal{K}\right)$, it follows that we need only consider the case where (3) holds.

Suppose now that (3) holds and that S is C-symmetric where C denotes a conjugation on $\mathcal{H} \oplus \mathcal{K}$. Writing the equations $C S=S^{*} C$ and $C S^{*}=S C$ in terms of the 2×2 block matrices

$$
S=\left(\begin{array}{ll}
T & 0 \tag{4}\\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

(the entries $C_{i j}$ of C are conjugate-linear operators), we find that

$$
\begin{gather*}
C_{11} T=T^{*} C_{11}, \tag{5}\\
C_{21} T=C_{21} T^{*}=0, \tag{6}\\
T^{*} C_{12}=T C_{12}=0 \tag{7}
\end{gather*}
$$

Since $C_{21} T=C_{21} T^{*}=0$, it follows that C_{21} vanishes on $\operatorname{ran} T+\operatorname{ran} T^{*}$ and hence on \mathcal{H} itself by (3). On the other hand, (7) implies that C_{12} vanishes on the orthogonal complements of $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ in \mathcal{H}. By (3), this implies that C_{12} vanishes identically.

It follows immediately from (4) that C_{11} and C_{22} must be conjugations on \mathcal{H} and \mathcal{K}, respectively, whence T is C_{11}-symmetric by (5). This concludes the proof of the lemma.

Now let us suppose that T is a partial isometry on \mathcal{H} and let

$$
\mathcal{H}_{1}=(\operatorname{ker} T)^{\perp}=\operatorname{ran} T^{*}
$$

and $\mathcal{H}_{2}=\operatorname{ker} T$. With respect to the decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$, it follows that

$$
T=\left(\begin{array}{ll}
A & 0 \\
B & 0
\end{array}\right)
$$

where $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}, B: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$, and

$$
\begin{equation*}
A^{*} A+B^{*} B=I \tag{8}
\end{equation*}
$$

(\Rightarrow) Suppose that T is a complex symmetric operator. For an operator with polar decomposition $T=U|T|$ (i.e., U is a partial isometry satisfying $\operatorname{ker} U=\operatorname{ker} T$ and $|T|$ denotes the positive
operator $\sqrt{T^{*} T}$), the Aluthge transform of T is defined to be the operator $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. Noting that

$$
T^{*} T=\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right)
$$

we find that

$$
\widetilde{T}=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)
$$

By [6, Thm. 1], we know that the Aluthge transform of a complex symmetric operator is complex symmetric. Applying Lemma 1 to \widetilde{T}, we conclude that A is complex symmetric, as desired.
(\Leftarrow) Let us now consider the more difficult implication of Theorem 2, namely that if A is a complex symmetric operator, then T is as well. We claim that it suffices to consider the case where $\overline{\operatorname{ran} B}=\mathcal{H}_{2}$. In other words, we argue that if

$$
\mathcal{K}=\overline{\operatorname{ran} T+\operatorname{ran} T^{*}}
$$

then we may suppose that $\mathcal{K}=\mathcal{H}$. Indeed, \mathcal{K} is a reducing subspace for T and $T=0$ on \mathcal{K}^{\perp}. By Lemma 1 , if $\left.T\right|_{\mathcal{K}}$ is a complex symmetric operator, then so is T.

Write $B=V|B|$ where $V: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a partial isometry with initial space (ker $\left.B\right)^{\perp} \subseteq \mathcal{H}_{1}$ and final space \mathcal{H}_{2} (since $\overline{\operatorname{ran} B}=\mathcal{H}_{2}$). In particular, we have the relations

$$
\begin{equation*}
V^{*} B=|B|=B^{*} V, \quad|B|=\sqrt{I-A^{*} A} . \tag{9}
\end{equation*}
$$

By hypothesis, the operator $A \in B\left(\mathcal{H}_{1}\right)$ is complex symmetric. Therefore suppose that K is a conjugation on \mathcal{H}_{1} such that $K A=A^{*} K$ and observe that the equations

$$
\begin{aligned}
A \sqrt{I-A^{*} A} & =\sqrt{I-A A^{*}} A \\
A^{*} \sqrt{I-A A^{*}} & =\sqrt{I-A^{*} A} A^{*} \\
K \sqrt{I-A^{*} A} & =\sqrt{I-A A^{*}} K \\
K \sqrt{I-A A^{*}} & =\sqrt{I-A^{*} A} K
\end{aligned}
$$

follow from a standard polynomial approximation argument (i.e., if $p(x) \in \mathbb{R}[x]$, then $A p\left(A^{*} A\right)=p\left(A A^{*}\right) A$ and $K p\left(A^{*} A\right)=p\left(A A^{*}\right) K$ hold, so that the desired identities follow upon passage to the norm limit). In particular, it follows from the preceding that

$$
(K A) \sqrt{I-A^{*} A}=\sqrt{I-A^{*} A}(K A)
$$

that is

$$
\begin{equation*}
K A|B|=|B| K A, \quad A^{*} K|B|=|B| A^{*} K \tag{10}
\end{equation*}
$$

Let us now define a conjugate-linear operator C on \mathcal{H} by the formula

$$
C=\left(\begin{array}{cc}
A K & K B^{*} \tag{11}\\
B K & -V A^{*} K V^{*}
\end{array}\right) .
$$

Assuming for the moment that C is a conjugation on \mathcal{H}, we observe that

$$
\underbrace{\left(\begin{array}{ll}
A & 0 \\
B & 0
\end{array}\right)}_{T}=\underbrace{\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)}_{C} \underbrace{\left(\begin{array}{cc}
K & 0 \\
0 & 0
\end{array}\right)}_{J} \underbrace{\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)}_{|T|} .
$$

Since it is clear that J is a partial conjugation which is supported on the range of $|T|$ and which commutes with $|T|$, it follows immediately that T is a C-symmetric operator (see [8, Thm. 2]).

To complete the proof of Theorem 2, we must therefore show that C is a conjugation on \mathcal{H}. In other words, we must check that C^{2} is the identity operator on \mathcal{H} and that C is isometric. Since these computations are somewhat lengthy, we perform them separately:

Claim. $C^{2}=I$.
Proof of Claim. We first expand out C^{2} as a 2×2 block matrix:

$$
\begin{aligned}
C^{2} & =\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A K A K+K B^{*} B K & A K K B^{*}-K B^{*} V A^{*} K V^{*} \\
B K A K-V A^{*} K V^{*} B K & B K K B^{*}+V A^{*} K V^{*} V A^{*} K V^{*}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A A^{*}+K B^{*} B K & A B^{*}-K B^{*} V A^{*} K V^{*} \\
B A^{*}-V A^{*} K V^{*} B K & B B^{*}+V A^{*} K V^{*} V A^{*} K V^{*}
\end{array}\right)
\end{aligned}
$$

To obtain the preceding line, we used the fact that K is a conjugation and A is K-symmetric. Letting $E_{i j}$ denote the entries of the preceding block matrix we find that

$$
\begin{aligned}
E_{11} & =A A^{*}+K B^{*} B K \\
& =A A^{*}+K\left(I-A^{*} A\right) K \\
& =A A^{*}+\left(I-A A^{*}\right) \\
& =I, \\
E_{12} & =A B^{*}-K B^{*} V A^{*} K V^{*} \\
& =A B^{*}-K|B| A^{*} K V^{*} \quad \text { by }(9) \\
& =A B^{*}-K A^{*} K|B| V^{*} \quad \text { by }(10) \\
& =A B^{*}-A|B| V^{*} \\
& =A B^{*}-A B^{*} \quad \text { since } B^{*}=|B| V \\
& =0, \\
E_{21} & =B A^{*}-V A^{*} K V^{*} B K \\
& =B A^{*}-V A^{*} K|B| K \quad \text { since } V^{*} B=|B| \\
& =B A^{*}-V|B| A^{*} K K \quad \text { by }(10)
\end{aligned}
$$

$$
\begin{aligned}
& =B A^{*}-V|B| A^{*} \\
& =B A^{*}-B A^{*} \quad \text { since } B=V|B| \\
& =0
\end{aligned}
$$

As for E_{22}, it suffices to show that E_{22} agrees with I (the identity operator on \mathcal{H}_{2}) on the range of B, which is dense in \mathcal{H}_{2}. In other words, we wish to show that $E_{22} B x=B x$ for all $x \in \mathcal{H}_{2}$, which is equivalent to showing that

$$
\begin{equation*}
E_{22} B x=B B^{*} B x+V A^{*} K V^{*} V A^{*} K V^{*} B x=B x \tag{12}
\end{equation*}
$$

for all $x \in \mathcal{H}_{2}$. Let us investigate the second term of (12):

$$
\begin{aligned}
V A^{*} K V^{*} V A^{*} K V^{*} B x & =V A^{*} K V^{*} V A^{*} K|B| x \quad \text { by }(9) \\
& =V A^{*} K V^{*} V|B| A^{*} K x \quad \text { by (10) } \\
& =V A^{*} K|B| A^{*} K x \quad \text { since } V^{*} V=P_{\overline{\mathrm{ran}}|B|} \\
& =V|B| A^{*} K A^{*} K x \quad \text { by }(10) \\
& =B A^{*} K A^{*} K x \quad \text { since } B=V|B| \\
& =B A^{*} A x \\
& =B\left(I-B^{*} B\right) x \quad \text { since } A^{*} A+B^{*} B=I \\
& =B x-B B^{*} B x .
\end{aligned}
$$

Putting this together with (12), we find that $E_{22} B x=B x$ for all $x \in \mathcal{H}_{2}$ whence $E_{22}=I$, as claimed.

Claim. C is isometric.

Proof of Claim. The proof requires three steps:
(i) Show that C is isometric on \mathcal{H}_{1}.
(ii) Show that C is isometric on $B \mathcal{H}_{1}$, which is dense in \mathcal{H}_{2}.
(iii) Show that $C \mathcal{H}_{1} \perp C\left(B \mathcal{H}_{1}\right)$.

For the first portion, observe that

$$
\begin{aligned}
\left\|C\binom{x}{0}\right\|^{2} & =\left\|\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)\binom{x}{0}\right\|^{2} \\
& =\left\|\binom{A K x}{B K x}\right\|^{2} \\
& =\langle A K x, A K x\rangle+\langle B K x, B K x\rangle \\
& =\left\langle A^{*} A K x, K x\right\rangle+\left\langle B^{*} B K x, K x\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\left(A^{*} A+B^{*} B\right) K x, K x\right\rangle \\
& =\langle K x, K x\rangle \\
& =\|K x\|^{2} \\
& =\|x\|^{2} .
\end{aligned}
$$

Thus (i) holds.
Now for (ii):

$$
\begin{aligned}
\left\|C\binom{0}{B x}\right\|^{2} & =\left\|\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)\binom{0}{B x}\right\|^{2} \\
& =\left\|\binom{K B^{*} B x}{-V A^{*} K V^{*} B x}\right\|^{2} \\
& =\left\|K B^{*} B x\right\|^{2}+\left\|V A^{*} K V^{*} B x\right\|^{2} \\
& =\left\|B^{*} B x\right\|^{2}+\left\|V A^{*} K|B| x\right\|^{2} \\
& =\left\|B^{*} B x\right\|^{2}+\left\|V|B| A^{*} K x\right\|^{2} \\
& =\left\|B^{*} B x\right\|^{2}+\left\|B A^{*} K x\right\|^{2} \\
& =\left\|B^{*} B x\right\|^{2}+\left\langle B A^{*} K x, B A^{*} K x\right\rangle \\
& =\left\|B^{*} B x\right\|^{2}+\left\langle B^{*} B A^{*} K x, A^{*} K x\right\rangle \\
& =\left\|B^{*} B x\right\|^{2}+\left\langle\left(I-A^{*} A\right) A^{*} K x, A^{*} K x\right\rangle \\
& =\left\|B^{*} B x\right\|^{2}+\left\langle A^{*} K\left(I-A^{*} A\right) x, A^{*} K x\right\rangle \\
& =\left\|B^{*} B x\right\|^{2}+\left\langle K\left(I-A^{*} A\right) x, A A^{*} K x\right\rangle \\
& =\left\langle B^{*} B x, B^{*} B x\right\rangle+\left\langle K A A^{*} K x,\left(I-A^{*} A\right) x\right\rangle \\
& =\left\langle\left(I-A^{*} A\right) x,\left(I-A^{*} A\right) x\right\rangle+\left\langle A^{*} A x,\left(I-A^{*} A\right) x\right\rangle \\
& =\left\langle x,\left(I-A^{*} A\right) x\right\rangle-\left\langle A^{*} A x,\left(I-A^{*} A\right) x\right\rangle+\left\langle A^{*} A x,\left(I-A^{*} A\right) x\right\rangle \\
& =\left\langle x,\left(I-A^{*} A\right) x\right\rangle \\
& =\left\langle x, B^{*} B x\right\rangle \\
& =\langle B x, B x\rangle \\
& =\|B x\|^{2} .
\end{aligned}
$$

Thus (ii) holds.
Now for (iii):

$$
\begin{aligned}
\left\langle C\binom{x}{0}, C\binom{0}{B y}\right\rangle & =\left\langle\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)\binom{x}{0},\left(\begin{array}{cc}
A K & K B^{*} \\
B K & -V A^{*} K V^{*}
\end{array}\right)\binom{0}{B y}\right\rangle \\
& =\left\langle\binom{ A K x}{B K x},\binom{K B^{*} B y}{-V A^{*} K V^{*} B y}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle A K x, K B^{*} B y\right\rangle-\left\langle B K x, V A^{*} K V^{*} B y\right\rangle \\
& =\left\langle B^{*} B y, K A K x\right\rangle-\left\langle B K x, V A^{*} K\right| B|y\rangle \\
& =\left\langle B^{*} B y, A^{*} x\right\rangle-\langle B K x, V| B\left|A^{*} K y\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle B K x, B A^{*} K y\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle B^{*} B K x, A^{*} K y\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle\left(I-A^{*} A\right) K x, A^{*} K y\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle K\left(I-A A^{*}\right) x, A^{*} K y\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle K A^{*} K y,\left(I-A A^{*}\right) x\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle A y,\left(I-A A^{*}\right) x\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle\left(I-A A^{*}\right) A y, x\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle A\left(I-A^{*} A\right) y, x\right\rangle \\
& =\left\langle A B^{*} B y, x\right\rangle-\left\langle A B^{*} B y, x\right\rangle \\
& =0 .
\end{aligned}
$$

By the polarization identity, it follows that

$$
\left\langle C\binom{x_{1}}{B x_{2}}, C\binom{y_{1}}{B y_{2}}\right\rangle=\left\langle\binom{ x_{2}}{B y_{2}},\binom{x_{1}}{B y_{1}}\right\rangle
$$

holds for all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathcal{H}_{1}$ whence C is isometric on \mathcal{H}.

3. Partial isometries and the norm closure problem

Partial isometries on infinite-dimensional spaces often provide examples of note. For instance, one can give a simple example of a partial isometry T satisfying $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker} T^{*}=\infty$ which is not a complex symmetric operator:

Example 1. Let S denote the unilateral shift on $l^{2}(\mathbb{N})$. Although S is certainly not a complex symmetric operator (by (ii) of Theorem 1; see also [4, Ex. 2.14], [7, Prop. 1], or [5, Cor. 7]), part (i) of Theorem 1 ensures that the partial isometry $S \oplus S^{*}$ is complex symmetric. Indeed, take N to be the bilateral shift on $l^{2}(\mathbb{Z})$, note that $S \oplus S^{*}$ is unitarily equivalent to $N-N e_{0} \otimes e_{0}$, and appeal to [9, Thm. 3]. That $S \oplus S^{*}$ is complex symmetric can also be verified by a direct computation [8, Ex. 5]. On the other hand, the partial isometry $T=S \oplus 0$ on $l^{2}(\mathbb{N}) \oplus l^{2}(\mathbb{N})$ is not a complex symmetric operator by Lemma 1 .

Let $\mathcal{S}(\mathcal{H})$ denote the subset of $B(\mathcal{H})$ consisting of all bounded complex symmetric operators on \mathcal{H}. There are several ways to think about $\mathcal{S}(\mathcal{H})$. By definition, we have

$$
\mathcal{S}(\mathcal{H})=\left\{T \in B(\mathcal{H}): \exists \text { a conjugation } C \text { s.t. } T=C T^{*} C\right\}
$$

If C is a fixed conjugation on \mathcal{H}, then we also have

$$
\mathcal{S}(\mathcal{H})=\left\{U T U^{*}: T=C T^{*} C, U \text { unitary }\right\}
$$

Thus if we identify \mathcal{H} with $l^{2}(\mathbb{N})$ and C denotes the canonical conjugation on $l^{2}(\mathbb{N})$ (i.e., entry-by-entry complex conjugation), we can think of $\mathcal{S}(\mathcal{H})$ as being the unitary orbit of the set of all bounded (infinite) complex symmetric matrices.

The following example shows that the set $\mathcal{S}(\mathcal{H})$ is not closed in the strong operator topology (SOT):

Example 2. We maintain the notation of Example 1. For $n \in \mathbb{N}$, let P_{n} denote the orthogonal projection onto the span of the basis vectors $\left\{e_{i}: i \geqslant n\right\}$ of $l^{2}(\mathbb{N})$. Now observe that each operator $T_{n}=P_{n} S \oplus S^{*}$ is unitarily equivalent to $S \oplus 0_{n} \oplus S^{*}$ where 0_{n} denotes the zero operator on an n-dimensional Hilbert space. Each T_{n} is complex symmetric since $S \oplus S^{*}$ is complex symmetric (by Lemma 1). On the other hand, since $P_{n} S$ is SOT-convergent to 0 , it follows that the SOT-limit of the sequence T_{n} is $0 \oplus S^{*}$, which is not a complex symmetric operator (by Lemma 1).

The preceding example demonstrates that the set of all complex symmetric operators (on a fixed, infinite-dimensional Hilbert space \mathcal{H}) is not SOT-closed. We also remark that the conjugations corresponding to the operators T_{n} from Example 2 depend on n. In contrast, if we fix a conjugation C, then it is elementary to see that the set of C-symmetric operators is a SOT-closed subspace of $B(\mathcal{H})$.

We conclude with a related question, which we have been unable to resolve:
Question. Is $\mathcal{S}(\mathcal{H})$ norm closed?

References

[1] L. Balayan, S.R. Garcia, Unitary equivalence to a complex symmetric matrix: Geometric criteria, preprint.
[2] N. Chevrot, E. Fricain, D. Timotin, The characteristic function of a complex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007) 2877-2886, MR2317964 (2008c:47025).
[3] J.B. Conway, A Course in Functional Analysis, second ed., Grad. Texts in Math., vol. 96, Springer-Verlag, New York, 1990.
[4] S.R. Garcia, Conjugation and Clark operators, in: Contemp. Math., vol. 393, 2006, pp. 67-112, MR2198373 (2007b:47073).
[5] S.R. Garcia, Means of unitaries, conjugations, and the Friedrichs operator, J. Math. Anal. Appl. 335 (2007) 941947, MR2345511 (2008i:47070).
[6] S.R. Garcia, Aluthge transforms of complex symmetric operators, Integral Equations Operator Theory 60 (3) (2008) 357-367, MR2392831.
[7] S.R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006) 12851315, MR2187654 (2006j:47036).
[8] S.R. Garcia, M. Putinar, Complex symmetric operators and applications II, Trans. Amer. Math. Soc. 359 (2007) 3913-3931, MR2302518 (2008b:47005).
[9] S.R. Garcia, W.R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc., in press.
[10] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer-Verlag, New York, 1982.
[11] J.E. Tener, Unitary equivalence to a complex symmetric matrix: An algorithm, J. Math. Anal. Appl. 341 (1) (2008) 640-648, MR2394112 (2008m:15062).

[^0]: * Corresponding author.

 E-mail addresses: stephan.garcia@pomona.edu (S.R. Garcia), wrw@email.unc.edu (W.R. Wogen).
 URLs: http://pages.pomona.edu/~sg064747 (S.R. Garcia), http://www.math.unc.edu/Faculty/wrw (W.R. Wogen).
 ${ }^{1}$ First author partially supported by National Science Foundation Grant DMS-0638789.

