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Abstract

An operator T ∈ B(H) is complex symmetric if there exists a conjugate-linear, isometric involution
C :H→H so that T = CT ∗C. We provide a concrete description of all complex symmetric partial isome-
tries. In particular, we prove that any partial isometry on a Hilbert space of dimension ! 4 is complex
symmetric.
 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this note is to complete the classification of complex symmetric partial isometries
which was started in [9]. In particular, we give a concrete necessary and sufficient condition for
a partial isometry to be a complex symmetric operator.

Before proceeding any further, let us first recall a few definitions. In the following, H de-
notes a separable, complex Hilbert space and B(H) denotes the collection of all bounded linear
operators on H.
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Definition. A conjugation is a conjugate-linear operator C :H→H, which is both involutive
(i.e., C2 = I ) and isometric (i.e., 〈Cx,Cy〉 =〈 y, x〉).

Definition. We say that T ∈ B(H) is C-symmetric if T = CT ∗C. We say that T is complex
symmetric if there exists a conjugation C with respect to which T is C-symmetric.

It is not hard to see that T is a complex symmetric operator if and only if T is unitarily
equivalent to a symmetric matrix with complex entries, regarded as an operator acting on an
l2-space of the appropriate dimension (see [4, Sect. 2.4] or [7, Prop. 2]).

One can also easily show that if dim kerT &= dim kerT ∗, then T is not a complex symmetric
operator. For instance, the unilateral shift is perhaps the most ubiquitous example of a partial
isometry which is not complex symmetric (see [7, Prop. 1], [4, Ex. 2.14], [5, Cor. 7]). On the
other hand, we have [9, Thm. 4]:

Theorem 1. Let T ∈ B(H) be a partial isometry.

(i) If dim kerT = dim kerT ∗ = 1, then T is a complex symmetric operator.
(ii) If dim kerT &= dim kerT ∗, then T is not a complex symmetric operator.

(iii) If 2 ! dim kerT = dim kerT ∗ ! ∞, then either possibility can (and does) occur.

Although these results are the sharpest possible statements that can be made given only the
data (dim kerT ,dim kerT ∗), they are in some sense unsatisfactory. While it is known that there
exist partial isometries in B(H) that are not complex symmetric whenever dimH" 5, it turns out
that every partial isometry in B(H) is complex symmetric if dimH! 3. The authors were unable
to settle the issue in the case dimH = 4. To be more specific, the techniques used in [9] were
insufficient to discuss the case dimH= 4 and dim kerT = 2. Significant numerical evidence in
favor of the assertion that all partial isometries on a four-dimensional Hilbert space are complex
symmetric has recently been produced by J. Tener [11]. Let us now describe our results and the
resolution of this problem.

Suppose that T is a partial isometry on H and let

H1 = (kerT )⊥ = ranT ∗ (1)

denote the initial space of T and H2 = (H1)
⊥ = kerT denote its orthogonal complement (see

[10, Pr. 127] or [3, Ch. VIII, Sect. 3] for terminology). With respect to the orthogonal decompo-
sition H=H1 ⊕H2, we have

T =
(

A 0
B 0

)
(2)

where A :H1 →H1 and B :H1 →H2. Furthermore, the fact that T ∗T is the orthogonal projec-
tion onto H1 yields the identity

A∗A + B∗B = I,

where I denotes the identity operator on H1. Finally, observe that the operator A ∈ B(H1) is
simply the compression of the partial isometry T to its initial space.
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The main result of this note is the following concrete description of complex symmetric partial
isometries:

Theorem 2. Let T ∈ B(H) be a partial isometry. If A denotes the compression of T to its initial
space, then T is a complex symmetric operator if and only if A is a complex symmetric operator.

Due to its somewhat lengthy and computational proof, we defer the proof of the preceding
theorem until Section 2. We remark that Theorem 2 remains true if one instead considers the
final space of T . Indeed, simply apply the theorem with T ∗ in place of T and then take adjoints.

Corollary 1. Every partial isometry of rank ! 2 is complex symmetric.

Proof. Let T ∈ B(H) be a partial isometry such that rankT ! 2. If rankT = 0, then T = 0 and
there is nothing to prove. If rankT = 1, then we may appeal to [9, Cor. 5], which asserts that
every rank-one operator is complex symmetric. If rankT = 2, then we may write

T =
(

A 0
B 0

)

where A is an operator on a two-dimensional space. Since every operator on a two-dimensional
Hilbert space is complex symmetric (see [1, Cor. 3], [2, Cor. 3.3], [7, Ex. 6], [9, Cor. 1], or
[11, Cor. 3]), the desired conclusion follows immediately from Theorem 2. !

Corollary 2. Every partial isometry on a Hilbert space of dimension ! 4 is complex symmetric.

Proof. As mentioned earlier, the results of [9] indicate that only the case dimH = 4 and
dim kerT = 2 requires resolution. The corollary is now an immediate consequence of Theorem 2
and the fact that every operator on a two-dimensional Hilbert space is complex symmetric. !

We conclude this section with the following theorem, which asserts that each C-symmetric
partial isometry can be extended to a C-symmetric unitary operator on the whole space (the
significance lies in the fact that the corresponding conjugations for these two operators are the
same).

Theorem 3. If T is a C-symmetric partial isometry, then there exists a C-symmetric unitary
operator U and an orthogonal projection P such that T = UP .

Proof. Since T is a C-symmetric partial isometry, it follows that |T | = P is an orthogonal pro-
jection and that T = CJP where J is a partial conjugation supported on ranP which commutes
with P [8, Sect. 2.2]. We may extend J to a conjugation J̃ on all of H by letting J̃ = J ⊕ J ′

where J ′ is any conjugation on kerP . The operator U = CJ̃ is the desired C-symmetric unitary
operator. !

2. Proof of Theorem 2

This entire section is devoted to the proof of Theorem 2. We first require the following
lemma:

Lemma 1. IfH,K are separable complex Hilbert spaces, then T ∈ B(H) is a complex symmetric
operator if and only if T ⊕ 0 ∈ B(H⊕K) is a complex symmetric operator.
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Proof. If T is a C-symmetric operator on H, then it is easily verified that T ⊕ 0 is (C ⊕ J )-
symmetric on H⊕K for any conjugation J on K. The other direction is slightly more difficult
to prove.

Suppose that S = T ⊕ 0 is a complex symmetric operator on H⊕K. Before proceeding any
further, let us remark that it suffices to consider the case where

H= ranT + ranT ∗. (3)

Otherwise let H1 = ranT + ranT ∗ and note that H1 is a reducing subspace of T . If H2 de-
notes the orthogonal complement of H1 inH, then with respect to the orthogonal decomposition
H1 ⊕H2 ⊕K, the operator S has the form T ′ ⊕0⊕0, where T ′ denotes the restriction of T toH1.
By now considering S with respect to the orthogonal decomposition H⊕K=H1 ⊕ (H2 ⊕K),
it follows that we need only consider the case where (3) holds.

Suppose now that (3) holds and that S is C-symmetric where C denotes a conjugation on
H⊕K. Writing the equations CS = S∗C and CS∗ = SC in terms of the 2 × 2 block matrices

S =
(

T 0
0 0

)
, C =

(
C11 C12

C21 C22

)
(4)

(the entries Cij of C are conjugate-linear operators), we find that

C11T = T ∗C11, (5)

C21T = C21T
∗ = 0, (6)

T ∗C12 = T C12 = 0. (7)

Since C21T = C21T
∗ = 0, it follows that C21 vanishes on ranT + ranT ∗ and hence on H

itself by (3). On the other hand, (7) implies that C12 vanishes on the orthogonal complements
of kerT and kerT ∗ in H. By (3), this implies that C12 vanishes identically.

It follows immediately from (4) that C11 and C22 must be conjugations on H and K, respec-
tively, whence T is C11-symmetric by (5). This concludes the proof of the lemma. !

Now let us suppose that T is a partial isometry on H and let

H1 = (kerT )⊥ = ranT ∗

and H2 = kerT . With respect to the decomposition H=H1 ⊕H2, it follows that

T =
(

A 0
B 0

)

where A :H1 →H1, B :H1 →H2, and

A∗A + B∗B = I. (8)

(⇒) Suppose that T is a complex symmetric operator. For an operator with polar decomposi-
tion T = U |T | (i.e., U is a partial isometry satisfying kerU = kerT and |T | denotes the positive
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operator
√

T ∗T ), the Aluthge transform of T is defined to be the operator T̃ = |T | 1
2 U |T | 1

2 .
Noting that

T ∗T =
(

I 0
0 0

)
,

we find that

T̃ =
(

A 0
0 0

)
.

By [6, Thm. 1], we know that the Aluthge transform of a complex symmetric operator is complex
symmetric. Applying Lemma 1 to T̃ , we conclude that A is complex symmetric, as desired.

(⇐) Let us now consider the more difficult implication of Theorem 2, namely that if A is
a complex symmetric operator, then T is as well. We claim that it suffices to consider the case
where ranB =H2. In other words, we argue that if

K= ranT + ranT ∗,

then we may suppose that K=H. Indeed, K is a reducing subspace for T and T = 0 on K⊥. By
Lemma 1, if T |K is a complex symmetric operator, then so is T .

Write B = V |B| where V :H1 →H2 is a partial isometry with initial space (kerB)⊥ ⊆H1
and final space H2 (since ranB =H2). In particular, we have the relations

V ∗B = |B| = B∗V, |B| =
√

I − A∗A. (9)

By hypothesis, the operator A ∈ B(H1) is complex symmetric. Therefore suppose that K is
a conjugation on H1 such that KA = A∗K and observe that the equations

A
√

I − A∗A =
√

I − AA∗A,

A∗√I − AA∗ =
√

I − A∗AA∗,

K
√

I − A∗A =
√

I − AA∗K,

K
√

I − AA∗ =
√

I − A∗AK,

follow from a standard polynomial approximation argument (i.e., if p(x) ∈ R[x], then
Ap(A∗A) = p(AA∗)A and Kp(A∗A) = p(AA∗)K hold, so that the desired identities follow
upon passage to the norm limit). In particular, it follows from the preceding that

(KA)
√

I − A∗A =
√

I − A∗A(KA),

that is

KA|B| = |B|KA, A∗K|B| = |B|A∗K. (10)

Let us now define a conjugate-linear operator C on H by the formula

C =
(

AK KB∗

BK −V A∗KV ∗

)
. (11)
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Assuming for the moment that C is a conjugation on H, we observe that

(
A 0
B 0

)

︸ ︷︷ ︸
T

=
(

AK KB∗

BK −V A∗KV ∗

)

︸ ︷︷ ︸
C

(
K 0
0 0

)

︸ ︷︷ ︸
J

(
I 0
0 0

)

︸ ︷︷ ︸
|T |

.

Since it is clear that J is a partial conjugation which is supported on the range of |T | and which
commutes with |T |, it follows immediately that T is a C-symmetric operator (see [8, Thm. 2]).

To complete the proof of Theorem 2, we must therefore show that C is a conjugation onH. In
other words, we must check that C2 is the identity operator on H and that C is isometric. Since
these computations are somewhat lengthy, we perform them separately:

Claim. C2 = I .

Proof of Claim. We first expand out C2 as a 2 × 2 block matrix:

C2 =
(

AK KB∗

BK −V A∗KV ∗

)(
AK KB∗

BK −V A∗KV ∗

)

=
(

AKAK + KB∗BK AKKB∗ − KB∗V A∗KV ∗

BKAK − V A∗KV ∗BK BKKB∗ + V A∗KV ∗V A∗KV ∗

)

=
(

AA∗ + KB∗BK AB∗ − KB∗V A∗KV ∗

BA∗ − V A∗KV ∗BK BB∗ + V A∗KV ∗V A∗KV ∗

)
.

To obtain the preceding line, we used the fact that K is a conjugation and A is K-symmetric.
Letting Eij denote the entries of the preceding block matrix we find that

E11 = AA∗ + KB∗BK

= AA∗ + K(I − A∗A)K

= AA∗ + (I − AA∗)

= I,

E12 = AB∗ − KB∗V A∗KV ∗

= AB∗ − K|B|A∗KV ∗ by (9)

= AB∗ − KA∗K|B|V ∗ by (10)

= AB∗ − A|B|V ∗

= AB∗ − AB∗ since B∗ = |B|V
= 0,

E21 = BA∗ − V A∗KV ∗BK

= BA∗ − V A∗K|B|K since V ∗B = |B|
= BA∗ − V |B|A∗KK by (10)
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= BA∗ − V |B|A∗

= BA∗ − BA∗ since B = V |B|
= 0.

As for E22, it suffices to show that E22 agrees with I (the identity operator on H2) on the range
of B , which is dense in H2. In other words, we wish to show that E22Bx = Bx for all x ∈H2,
which is equivalent to showing that

E22Bx = BB∗Bx + V A∗KV ∗V A∗KV ∗Bx = Bx (12)

for all x ∈H2. Let us investigate the second term of (12):

V A∗KV ∗V A∗KV ∗Bx = V A∗KV ∗V A∗K|B|x by (9)

= V A∗KV ∗V |B|A∗Kx by (10)

= V A∗K|B|A∗Kx since V ∗V = Pran |B|

= V |B|A∗KA∗Kx by (10)

= BA∗KA∗Kx since B = V |B|
= BA∗Ax

= B(I − B∗B)x since A∗A + B∗B = I

= Bx − BB∗Bx.

Putting this together with (12), we find that E22Bx = Bx for all x ∈ H2 whence E22 = I , as
claimed. !

Claim. C is isometric.

Proof of Claim. The proof requires three steps:

(i) Show that C is isometric on H1.
(ii) Show that C is isometric on BH1, which is dense in H2.

(iii) Show that CH1 ⊥ C(BH1).

For the first portion, observe that

∥∥∥∥C

(
x

0

)∥∥∥∥
2

=
∥∥∥∥

(
AK KB∗

BK −V A∗KV ∗

)(
x

0

)∥∥∥∥
2

=
∥∥∥∥

(
AKx

BKx

)∥∥∥∥
2

= 〈AKx,AKx〉 +〈 BKx,BKx〉
= 〈A∗AKx,Kx〉 +〈 B∗BKx,Kx〉
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=
〈
(A∗A + B∗B)Kx,Kx

〉

= 〈Kx,Kx〉
= ‖Kx‖2

= ‖x‖2.

Thus (i) holds.
Now for (ii):

∥∥∥∥C

(
0

Bx

)∥∥∥∥
2

=
∥∥∥∥

(
AK KB∗

BK −V A∗KV ∗

)(
0

Bx

)∥∥∥∥
2

=
∥∥∥∥

(
KB∗Bx

−V A∗KV ∗Bx

)∥∥∥∥
2

= ‖KB∗Bx‖2 + ‖V A∗KV ∗Bx‖2

= ‖B∗Bx‖2 +
∥∥V A∗K|B|x

∥∥2

= ‖B∗Bx‖2 +
∥∥V |B|A∗Kx

∥∥2

= ‖B∗Bx‖2 + ‖BA∗Kx‖2

= ‖B∗Bx‖2 + 〈BA∗Kx,BA∗Kx〉
= ‖B∗Bx‖2 + 〈B∗BA∗Kx,A∗Kx〉
= ‖B∗Bx‖2 +

〈
(I − A∗A)A∗Kx,A∗Kx

〉

= ‖B∗Bx‖2 +
〈
A∗K(I − A∗A)x,A∗Kx

〉

= ‖B∗Bx‖2 +
〈
K(I − A∗A)x,AA∗Kx

〉

= 〈B∗Bx,B∗Bx〉 +
〈
KAA∗Kx, (I − A∗A)x

〉

=
〈
(I − A∗A)x, (I − A∗A)x

〉
+

〈
A∗Ax, (I − A∗A)x

〉

=
〈
x, (I − A∗A)x

〉
−

〈
A∗Ax, (I − A∗A)x

〉
+

〈
A∗Ax, (I − A∗A)x

〉

=
〈
x, (I − A∗A)x

〉

= 〈x,B∗Bx〉
= 〈Bx,Bx〉
= ‖Bx‖2.

Thus (ii) holds.
Now for (iii):

〈
C

(
x

0

)
,C

(
0

By

)〉
=

〈(
AK KB∗

BK −V A∗KV ∗

)(
x

0

)
,

(
AK KB∗

BK −V A∗KV ∗

)(
0

By

)〉

=
〈(

AKx

BKx

)
,

(
KB∗By

−V A∗KV ∗By

)〉
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= 〈AKx,KB∗By〉 − 〈BKx,V A∗KV ∗By〉
= 〈B∗By,KAKx〉 −

〈
BKx,V A∗K|B|y

〉

= 〈B∗By,A∗x〉 −
〈
BKx,V |B|A∗Ky

〉

= 〈AB∗By,x〉 − 〈BKx,BA∗Ky〉
= 〈AB∗By,x〉 − 〈B∗BKx,A∗Ky〉
= 〈AB∗By,x〉 −

〈
(I − A∗A)Kx,A∗Ky

〉

= 〈AB∗By,x〉 −
〈
K(I − AA∗)x,A∗Ky

〉

= 〈AB∗By,x〉 −
〈
KA∗Ky, (I − AA∗)x

〉

= 〈AB∗By,x〉 −
〈
Ay, (I − AA∗)x

〉

= 〈AB∗By,x〉 −
〈
(I − AA∗)Ay,x

〉

= 〈AB∗By,x〉 −
〈
A(I − A∗A)y,x

〉

= 〈AB∗By,x〉 − 〈AB∗By,x〉
= 0.

By the polarization identity, it follows that

〈
C

(
x1

Bx2

)
,C

(
y1

By2

)〉
=

〈(
x2

By2

)
,

(
x1

By1

)〉

holds for all x1, x2, y1, y2 ∈H1 whence C is isometric on H. !

3. Partial isometries and the norm closure problem

Partial isometries on infinite-dimensional spaces often provide examples of note. For instance,
one can give a simple example of a partial isometry T satisfying dim kerT = dim kerT ∗ = ∞
which is not a complex symmetric operator:

Example 1. Let S denote the unilateral shift on l2(N). Although S is certainly not a complex
symmetric operator (by (ii) of Theorem 1; see also [4, Ex. 2.14], [7, Prop. 1], or [5, Cor. 7]),
part (i) of Theorem 1 ensures that the partial isometry S ⊕ S∗ is complex symmetric. Indeed,
take N to be the bilateral shift on l2(Z), note that S ⊕S∗ is unitarily equivalent to N −Ne0 ⊗ e0,
and appeal to [9, Thm. 3]. That S ⊕ S∗ is complex symmetric can also be verified by a direct
computation [8, Ex. 5]. On the other hand, the partial isometry T = S ⊕ 0 on l2(N) ⊕ l2(N) is
not a complex symmetric operator by Lemma 1.

Let S(H) denote the subset of B(H) consisting of all bounded complex symmetric operators
on H. There are several ways to think about S(H). By definition, we have

S(H) =
{
T ∈ B(H): ∃ a conjugation C s.t. T = CT ∗C

}
.
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If C is a fixed conjugation on H, then we also have

S(H) = {UT U∗: T = CT ∗C, U unitary}.

Thus if we identify H with l2(N) and C denotes the canonical conjugation on l2(N) (i.e., entry-
by-entry complex conjugation), we can think of S(H) as being the unitary orbit of the set of all
bounded (infinite) complex symmetric matrices.

The following example shows that the set S(H) is not closed in the strong operator topology
(SOT):

Example 2. We maintain the notation of Example 1. For n ∈ N, let Pn denote the orthogonal
projection onto the span of the basis vectors {ei : i " n} of l2(N). Now observe that each operator
Tn = PnS ⊕ S∗ is unitarily equivalent to S ⊕ 0n ⊕ S∗ where 0n denotes the zero operator on an
n-dimensional Hilbert space. Each Tn is complex symmetric since S ⊕ S∗ is complex symmetric
(by Lemma 1). On the other hand, since PnS is SOT-convergent to 0, it follows that the SOT-limit
of the sequence Tn is 0 ⊕ S∗, which is not a complex symmetric operator (by Lemma 1).

The preceding example demonstrates that the set of all complex symmetric operators (on a
fixed, infinite-dimensional Hilbert space H) is not SOT-closed. We also remark that the conju-
gations corresponding to the operators Tn from Example 2 depend on n. In contrast, if we fix a
conjugation C, then it is elementary to see that the set of C-symmetric operators is a SOT-closed
subspace of B(H).

We conclude with a related question, which we have been unable to resolve:

Question. Is S(H) norm closed?
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