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Which Weighted Composition Operators
are Complex Symmetric?

Stephan Ramon Garcia and Christopher Hammond

Abstract. Recent work by several authors has revealed the existence of many
unexpected classes of normal weighted composition operators. On the other
hand, it is known that every normal operator is a complex symmetric operator.
We therefore undertake the study of complex symmetric weighted composition
operators, identifying several new classes of such operators.
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1. Introduction

In 2010, C. Cowen and E. Ko obtained an explicit characterization and spectral
description of all Hermitian weighted composition operators on the classical Hardy
space 𝐻2 [5]. This work was later extended to certain weighted Hardy spaces by
C. Cowen, G. Gunatillake, and E. Ko [4]. Along similar lines, P. Bourdon and
S. Narayan have recently studied normal weighted composition operators on𝐻2 [1].
Taken together, these articles have established the existence of several unexpected
families of normal weighted composition operators.

It turns out that normal operators are the simplest examples of complex sym-
metric operators. We say that a bounded operator 𝑇 on a complex Hilbert space
ℋ is complex symmetric if there exists a conjugation (i.e., a conjugate-linear, iso-
metric involution) 𝐽 such that 𝑇 = 𝐽𝑇 ∗𝐽 . The general study of such operators was
undertaken by the first author, M. Putinar, and W. Wogen, in various combina-
tions, in [7–10]. A number of other authors have also made significant contributions
[3, 11–14, 17–20].
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We consider here the problem of describing all complex symmetric weighted
composition operators. Among other results, we produce a class of complex sym-
metric weighted composition operators which includes the Hermitian examples
obtained in [4, 5] as special cases. We also raise a number of open questions which
we hope will spur further research.

2. Observations and results

In what follows, we let 𝐻2(𝛽) denote the weighted Hardy space which corresponds
to the weight sequence {𝛽(𝑛)}∞𝑛=0 [6, Sect. 2.1]. For each 𝑤 in the open unit disk

𝔻 and every integer 𝑛 ≥ 0, we let 𝐾
(𝑛)
𝑤 denote the unique function in 𝐻2(𝛽)

which satisfies ⟨𝑓,𝐾(𝑛)
𝑤 ⟩ = 𝑓 (𝑛)(𝑤) for every 𝑓 in 𝐻2(𝛽). For convenience, we

often choose to write 𝐾𝑤 in place of 𝐾
(0)
𝑤 . If 𝜑 : 𝔻 → 𝔻 is analytic, then the

composition operator 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is defined by setting

𝐶𝜑(𝑓) = 𝑓 ∘ 𝜑.

Given another analytic function 𝜓 : 𝔻 → ℂ, we define the weighted composition
operator 𝑊𝜑,𝜓 by setting

𝑊𝜑,𝜓(𝑓) = 𝜓 ⋅ (𝑓 ∘ 𝜑).

Assuming that 𝑊𝜑,𝜓 is bounded, one has the useful formulae

𝑊 ∗
𝜑,𝜓(𝐾𝑤) = 𝜓(𝑤)𝐾𝜑(𝑤), (1)

𝑊 ∗
𝜑,𝜓

(
𝐾(1)
𝑤

)
= 𝜓(𝑤)𝜑′(𝑤)𝐾(1)

𝜑(𝑤) + 𝜓′(𝑤)𝐾𝜑(𝑤). (2)

2.1. Composition operators

One initially expects few unweighted composition operators to be complex sym-
metric. In fact, the only obvious candidates which come to mind are the normal
composition operators. These are precisely the operators 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽)
where 𝜑(𝑧) = 𝑎𝑧 and ∣𝑎∣ ≤ 1 [6, Thm. 8.2]. One might initially suspect that
these are the only complex symmetric composition operators. This näıve conjec-
ture proves to be false, however, as there exist at least two other basic families of
complex symmetric composition operators.

Proposition 2.1. If 𝜑 is either (i) constant, or (ii) an involutive disk automorphism,
then 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is a complex symmetric operator.

The preceding follows immediately from the fact that an operator which is
algebraic of degree two is complex symmetric [10, Thm. 2]. In what follows, we work
only with nonconstant symbols 𝜑. It turns out that (ii) prompts an elementary
question whose answer has so far eluded us.

Question 1. Let 𝜑 be an involutive disk automorphism. Find an explicit conjuga-
tion 𝐽 : 𝐻2(𝛽) → 𝐻2(𝛽) such that 𝐶𝜑 = 𝐽𝐶∗

𝜑𝐽 .
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Naturally, one is also interested in determining whether there are any addi-
tional classes of complex symmetric composition operators.

Question 2. Characterize all complex symmetric composition operators 𝐶𝜑 on the
classical Hardy space 𝐻2 or, more generally, on weighted Hardy spaces 𝐻2(𝛽).

In the negative direction, we have the following results.

Proposition 2.2. If 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is a hyponormal composition operator
which is complex symmetric, then 𝜑(𝑧) = 𝑎𝑧 where ∣𝑎∣ ≤ 1.

Proof. Suppose 𝐶𝜑 is hyponormal; that is, ∥𝐶𝜑𝑓∥ ≥ ∥𝐶∗
𝜑𝑓∥ for all 𝑓 in 𝐻2(𝛽). If

𝐶𝜑 is 𝐽-symmetric, then it follows that

∥𝐶∗
𝜑𝑓∥ = ∥𝐽𝐶𝜑𝐽𝑓∥ = ∥𝐶𝜑𝐽𝑓∥ ≥ ∥𝐶∗

𝜑𝐽𝑓∥ = ∥𝐽𝐶𝜑𝑓∥ = ∥𝐶𝜑𝑓∥.
Thus ∥𝐶𝜑𝑓∥ = ∥𝐶∗

𝜑𝑓∥ for all 𝑓 in 𝐻2 whence 𝐶𝜑 is normal. By [6, Thm. 8.2] we
conclude that 𝜑(𝑧) = 𝑎𝑧 where ∣𝑎∣ ≤ 1. □
Proposition 2.3. Suppose that 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is 𝐽-symmetric. If 𝐽(1) is a
constant multiple of a kernel function 𝐾𝑤, then 𝜑(𝑤) = 𝑤. The converse holds
whenever 𝜑 is not an automorphism.

Proof. If 𝐽(1) = 𝛾𝐾𝑤 for some constant 𝛾 ∕= 0 and 𝐶𝜑 is 𝐽-symmetric, then

𝛾𝐾𝑤 = 𝐽(1) = 𝐽𝐶𝜑(1) = 𝐶∗
𝜑𝐽(1) = 𝐶∗

𝜑(𝛾𝐾𝑤) = 𝛾𝐾𝜑(𝑤),

from which we conclude that 𝜑(𝑤) = 𝑤. On the other hand, suppose that 𝜑(𝑤) =
𝑤. Since 𝐶∗

𝜑(𝐾𝑤) = 𝐾𝜑(𝑤) = 𝐾𝑤, we see that

𝐶𝜑𝐽(𝐾𝑤) = 𝐽𝐶∗
𝜑(𝐾𝑤) = 𝐽(𝐾𝑤).

As long as 𝜑 is not an automorphism, the only eigenvectors for 𝐶𝜑 corresponding
to the eigenvalue 1 are the constant functions [16, p. 90]. Therefore 𝐽(𝐾𝑤) must be
a constant function, which means that 𝐽(1) must be a scalar multiple of 𝐾𝑤. □

In light of the preceding, we see that if 𝐽 is a conjugation on 𝐻2(𝛽) such that
𝐽(1) is not a constant multiple of a kernel function, then there does not exist a 𝐽-
symmetric composition operator 𝐶𝜑 on 𝐻2(𝛽) whose symbol fixes a point in 𝔻. If
𝐽(1) is a constant multiple of 1, then we can say even more about 𝜑. The following
is inspired by an unpublished result of P. Bourdon and D. Szajda [6, Ex. 8.1.2].

Proposition 2.4. Suppose that 𝐽 : 𝐻2(𝛽) → 𝐻2(𝛽) is a conjugation, 𝐽(1) is a
constant multiple of 1, and 𝐽(𝑧) is a constant multiple of 𝑧𝑚 for some 𝑚 ≥ 1. If
𝐶𝜑 is 𝐽-symmetric, then 𝜑(𝑧) = 𝑎𝑧 for some ∣𝑎∣ ≤ 1.

Proof. Since 1 = 𝛽(0)𝐾0, it follows from Proposition 2.3 that 𝜑(0) = 0, whence

𝐶∗
𝜑

(
𝐾

(1)
0

)
= 𝜑′(0)𝐾(1)

𝜑(0) = 𝜑′(0)𝐾(1)
0

by (2). Thus 𝑧 = 𝛽(1)𝐾
(1)
0 is an eigenvector for 𝐶∗

𝜑 corresponding to the eigenvalue

𝜑′(0). Since 𝐶𝜑 is 𝐽-symmetric, 𝑧𝑚 must be an eigenvector for 𝐶𝜑 corresponding
to the eigenvalue 𝜑′(0). Observe that 𝐶𝜑(𝑧

𝑚) = 𝜑𝑚, which means that 𝜑(𝑧)𝑚 =
𝜑′(0)𝑧𝑚. Consequently 𝜑(𝑧) = 𝑎𝑧, where ∣𝑎∣ ≤ 1. □
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2.2. Weighted composition operators

Although our list of complex symmetric composition operators is somewhat sparse,
there are a variety of weighted composition operators which are known to be
complex symmetric. Indeed, the study of Hermitian, normal, and unitary weighted
composition operators has been the focus of intense research [1, 4, 5]. The following
is a generalization of [1, Lem. 2, Prop. 3], where the same conclusion is obtained
under the assumption that 𝑊𝜑,𝜓 is normal.

Proposition 2.5. If 𝑊𝜑,𝜓 : 𝐻2(𝛽) → 𝐻2(𝛽) is complex symmetric, then either 𝜓
is identically zero or 𝜓 is nonvanishing on 𝔻. Moreover, if 𝜑 is not a constant
function and 𝜓 is not identically zero, then 𝜑 is univalent.

Proof. Suppose that 𝑊𝜑,𝜓 is complex symmetric and that 𝜓 does not vanish iden-
tically. Since ker𝑊𝜑,𝜓 = {0}, we conclude that ker𝑊 ∗

𝜑,𝜓 = {0} by [7, Prop. 1].

If 𝜓(𝑤) = 0 for some 𝑤 in 𝔻, then 𝑊 ∗
𝜑,𝜓(𝐾𝑤) = 0 by (1). Since this contradicts

the fact that ker𝑊 ∗
𝜑,𝜓 is trivial, we conclude that 𝜓 is nonvanishing on 𝔻. Now

suppose that there are points 𝑤1 and 𝑤2 in 𝔻 such that 𝜑(𝑤1) = 𝜑(𝑤2). It follows
that

𝑊 ∗(𝜓(𝑤2)𝐾𝑤1 − 𝜓(𝑤1)𝐾𝑤2

)
= 𝜓(𝑤2)𝜓(𝑤1)𝐾𝜑(𝑤1) − 𝜓(𝑤1)𝜓(𝑤2)𝐾𝜑(𝑤2) = 0.

Since any distinct pair of reproducing kernel functions is linearly independent, we
conclude that 𝑤1 = 𝑤2. In other words, 𝜑 is univalent. □

The following result provides a severe restriction on the spectrum of a com-
plex symmetric weighted composition operator whose symbol has a fixed point in𝔻.

Proposition 2.6. Suppose that 𝑊𝜑,𝜓 : 𝐻2(𝛽) → 𝐻2(𝛽) is a complex symmetric
operator. If 𝜑(𝑤0) = 𝑤0 for some 𝑤0 in 𝔻, then 𝜓(𝑤0)𝜑

′(𝑤0)
𝑛 is an eigenvalue of

𝑊𝜑,𝜓 for every integer 𝑛 ≥ 0.

Proof. Since 𝑊𝜑,𝜓 is complex symmetric, by [7, Prop. 1] it suffices to prove that

𝜓(𝑤0)𝜑′(𝑤0)𝑛 (3)

is an eigenvalue for 𝑊 ∗
𝜑,𝜓. Let us first assume that 𝜑′(𝑤0) is not a root of unity.

We claim that for each 𝑛 ≥ 0, the function 𝐾
(𝑛)
𝑤0 can be written in the form

𝑣𝑛 + 𝛼𝑛−1𝑣𝑛−1 + 𝛼𝑛−2𝑣𝑛−2 + ⋅ ⋅ ⋅+ 𝛼0𝑣0,

where 𝑣𝑗 is an eigenvector for 𝑊𝜑,𝜓 corresponding to the eigenvalue 𝜓(𝑤0)𝜑′(𝑤0)𝑗 .
We prove this assertion by induction. Note that

𝑊 ∗
𝜑,𝜓(𝐾𝑤0) = 𝜓(𝑤0)𝐾𝜑(𝑤0) = 𝜓(𝑤0)𝐾𝑤0 ,

so the claim holds when 𝑛 = 0. Suppose then that the claim holds for all 𝑛 ≤ 𝑘

and consider the kernel function 𝐾
(𝑘+1)
𝑤0 . Now recall that 𝑊 ∗

𝜑,𝜓

(
𝐾

(𝑘+1)
𝑤0

)
equals

𝜓(𝑤0)𝜑′(𝑤0)𝑘+1𝐾
(𝑘+1)
𝜑(𝑤0)

plus a linear combination of kernel functions 𝐾
(𝑗)
𝑤0 with
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𝑗 ≤ 𝑘. Our induction hypothesis implies that each of these kernel functions is a
linear combination of eigenvectors 𝑣𝑗 . Therefore we may write

𝑊 ∗
𝜑,𝜓

(
𝐾(𝑘+1)
𝑤0

)
= 𝜓(𝑤0)𝜑′(𝑤0)𝑘+1𝐾(𝑘+1)

𝑤0
+ 𝛽𝑘𝑣𝑘 + 𝛽𝑘−1𝑣𝑘−1 + ⋅ ⋅ ⋅+ 𝛽0𝑣0

for some constants 𝛽0, 𝛽1, . . . , 𝛽𝑘. Observe that the function

𝑣𝑘+1 = 𝐾(𝑘+1)
𝑤0

+

𝑘∑
𝑗=0

𝛽𝑗

𝜓(𝑤0)
(
𝜑′(𝑤0)𝑘+1 − 𝜑′(𝑤0)𝑗

) 𝑣𝑗

is an eigenvector for 𝑊 ∗
𝜑,𝜓 corresponding to the eigenvalue 𝜓(𝑤0)𝜑′(𝑤0)𝑘+1. Con-

sequently our claim holds for all 𝑛. In other words, every term (3) is an eigenvalue
for 𝑊 ∗

𝜑,𝜓. If 𝜑
′(𝑤0) is an 𝑚th root of unity, then a similar argument shows that

𝐾(𝑛)
𝑤0

= 𝑣𝑛 + 𝛼𝑛−1𝑣𝑛−1 + 𝛼𝑛−2𝑣𝑛−2 + ⋅ ⋅ ⋅+ 𝛼0𝑣0

whenever 0 ≤ 𝑛 ≤ 𝑚−1. Hence (3) is an eigenvalue for 𝑊 ∗
𝜑,𝜓 when 𝑛 ≤ 𝑚−1 and

hence for all 𝑛. In either case, every number (3) is an eigenvalue for 𝑊 ∗
𝜑,𝜓, which

means that 𝜓(𝑤0)𝜑
′(𝑤0)

𝑛 is an eigenvalue for 𝑊𝜑,𝜓. □

Example 1. Fix 𝑎 ∈ 𝔻∖{0} and let

𝜑 =
𝑎− 𝑧

1− 𝑎𝑧
.

Since 𝜑 is an involutive automorphism, the composition operator 𝐶𝜑 : 𝐻2(𝛽) →
𝐻2(𝛽) is complex symmetric by Proposition 2.1. Moreover, observe that the spec-
trum 𝜎(𝐶𝜑) of 𝐶𝜑 is precisely {−1, 1}. On the other hand, Proposition 2.6 implies
that 𝜑′(𝑤0)

𝑛 belongs to 𝜎(𝐶𝜑) whenever 𝑤0 is a fixed point of 𝑤0. However, the
only fixed point of 𝜑 which lies inside of 𝔻 is

𝑤0 =
1−√

1− ∣𝑎∣2
𝑎

,

which happens to satisfy 𝜑′(𝑤0) = −1, in accordance with Proposition 2.6.

2.3. Koenigs eigenfunctions

For any nonconstant non-automorphism 𝜑 : 𝔻 → 𝔻 which has a fixed point 𝑤0 in
𝔻 and for which 𝜑′(𝑤0) ∕= 0, there is an analytic 𝜅 : 𝔻 → ℂ such that 𝜅 ∘ 𝜑 =
𝜑′(𝑤0)𝜅. This function, called the Koenigs eigenfunction for 𝜑, is unique up to
scalar multiplication [6, p. 62, p. 93]. Furthermore, 𝜅𝑛 (or any constant multiple
thereof) is the only analytic function for which 𝜅𝑛 ∘ 𝜑 = 𝜑′(𝑤0)

𝑛𝜅𝑛. Proposition
2.6, together with the details of its proof, yields the following result pertaining to
unweighted composition operators.

Proposition 2.7. Let 𝜑 : 𝔻 → 𝔻 be an analytic selfmap which is not an auto-
morphism and suppose that 𝜑(𝑤0) = 𝑤0 and 𝜑′(𝑤0) ∕= 0 for some 𝑤0 in 𝔻. If
𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is complex symmetric, then every power 𝜅𝑛 of the Koenigs
eigenfunction for 𝜑 belongs to 𝐻2(𝛽).
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It is not difficult to construct a univalent map 𝜑 : 𝔻 → 𝔻 in such a way that
one can readily determine whether its Koenigs eigenfunction belongs to 𝐻2(𝛽)
[16, pp. 93-94]. Let 𝜅 : 𝔻 → ℂ be a univalent function that vanishes at some point
𝑤0 and consider the region 𝜅(𝔻). Suppose that 𝜆𝜅(𝔻) ⊆ 𝜅(𝔻) for some complex
𝜆 with ∣𝜆∣ < 1. Define the map 𝜑 by 𝜑(𝑧) = 𝜅−1(𝜆𝜅(𝑧)). Then, by construction,
𝜑 is a univalent self-map of 𝔻 that fixes 𝑤0 and whose Koenigs eigenfunction is
𝜅. Hence, by starting with a 𝜅 that belongs to 𝐻2(𝛽), we construct a 𝜑 whose
Koenigs function belongs to 𝐻2(𝛽). Similarly, if we take 𝜅 such that 𝜅𝑛 does not
belong to 𝐻2(𝛽) for some 𝑛, we obtain a map whose corresponding composition
operator is not complex symmetric by Proposition 2.7. For example, consider any
such 𝜆 and take 𝜅(𝑧) = 2𝑧/(1 − 𝑧), which does not belong to the Hardy space
𝐻2. From this we obtain the map 𝜑(𝑧) = (𝜆𝑧)/(1 + (𝜆 − 1)𝑧), which induces a
composition operator 𝐶𝜑 : 𝐻2 → 𝐻2 which is not complex symmetric.

Much work has been done to determine the conditions under which a Koenigs
eigenfunction 𝜅 belongs to the Hardy space 𝐻2. In this context, Proposition 2.7
is equivalent to saying that 𝜅 belongs to 𝐻𝑝 for every 0 < 𝑝 < ∞. The following
proposition follows directly from [15, Thm. 2.2].

Proposition 2.8. Suppose that 𝜑 : 𝔻 → 𝔻 is not an automorphism and that 𝜑 has a
fixed point 𝑤0 in 𝔻 such that 𝜑′(𝑤0) ∕= 0. If 𝐶𝜑 : 𝐻2 → 𝐻2 is complex symmetric,
then the essential spectral radius of 𝐶𝜑 is 0. In other words, 𝐶𝜑 must be a Riesz
composition operator.

A good deal of work has been done to study Riesz composition operators on
𝐻2. Bourdon and Shapiro’s paper [2] serves as an excellent starting point.

Suppose that 𝜑 is not an automorphism, 𝜑(𝑤0) = 𝑤0, 𝜑
′(𝑤0) ∕= 0, and that

𝐶𝜑 is 𝐽-symmetric. As we have already observed, 𝐽(1) must be a constant multiple
of 𝐾𝑤0 . Let 𝜅 denote the Koenigs eigenfunction for 𝜑, normalized so that ∥𝜅∥ = 1.

We also know that 𝐽(𝜅) equals a constant multiple of 𝐾
(1)
𝑤0 . In particular, taking

into account the norms of these functions, we can write

𝐽(1) =
𝛾 𝛽(0)𝐾𝑤0

∥𝐾𝑤0∥
, 𝐽(𝜅) =

𝛿 𝐾
(1)
𝑤0∥∥𝐾(1)
𝑤0

∥∥ ,

where ∣𝛾∣ = ∣𝛿∣ = 1. Since ⟨𝜅, 1⟩ = ⟨𝐽(1), 𝐽(𝜅)⟩, we see that

∣𝜅(0)∣ =
∣∣𝐾(1)

𝑤0 (𝑤0)
∣∣

∥𝐾𝑤0∥
∥∥𝐾(1)

𝑤0

∥∥ .

If 𝑤0 = 0, then this tells us nothing. If 𝑤0 ∕= 0, however, it places a major restric-
tion upon the function 𝜅. In essence, most functions in 𝐻2(𝛽) cannot be Koenigs
eigenfunctions for complex symmetric composition operators.

2.4. An instructive example

We conclude this note by producing a class of complex symmetric weighted com-
position operators which includes the Hermitian examples obtained in [4, 5] as
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special cases. For each 𝜅 ≥ 1, let 𝐻2(𝛽𝜅) denote the weighted Hardy space whose
reproducing kernel is 𝐾𝑤(𝑧) = (1 − 𝑤𝑧)−𝜅. We now explicitly characterize all
weighted composition operators on 𝐻2(𝛽𝜅) which are 𝐽-symmetric with respect
to the conjugation

[𝐽𝑓 ](𝑧) = 𝑓(𝑧) (4)

on 𝐻2(𝛽𝜅). For the sake of convenience, we sometimes write 𝑓 := 𝐽𝑓 .

Proposition 2.9. A weighted composition operator 𝑊𝜑,𝜓 : 𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) is
𝐽-symmetric with respect to the conjugation (4) if and only if

𝜓(𝑧) =
𝑏

(1 − 𝑎0𝑧)𝜅
, 𝜑(𝑧) = 𝑎0 +

𝑎1𝑧

1− 𝑎0𝑧
, (5)

where 𝑎0 and 𝑎1 are constants such that 𝜑 maps 𝔻 into 𝔻. Moreover, such an
operator is normal if and only if either,

(i) 𝑏 = 0,

(ii) 𝑏 ∕= 0 and Im 𝑎0𝑎1 = (1− ∣𝑎0∣2) Im 𝑎0.

Moreover, 𝑊𝜑,𝜓 is Hermitian if and only if 𝑎0, 𝑎1, and 𝑏 each belong to ℝ.

Proof. To streamline our notation, we let 𝑊 := 𝑊𝜑,𝜓. A simple computation
now confirms that if 𝜓 and 𝜑 are given by (5), then 𝑊𝐽𝐾𝑤 = 𝐽𝑊 ∗𝐾𝑤 for all
𝑤 in 𝔻, implying that 𝑊 = 𝐽𝑊 ∗𝐽 . On the other hand, if 𝑊 = 𝐽𝑊 ∗𝐽 , then
𝑊𝐽𝐾𝑤 = 𝐽𝑊 ∗𝐾𝑤 for all 𝑤 in 𝔻. Since 𝐽𝐾𝑤 = 𝐾𝑤, this implies that

𝜓(𝑧)𝐾𝑤(𝜑(𝑧)) = 𝜓(𝑤)𝐾
𝜑(𝑤)

(𝑧) (6)

holds for all 𝑧, 𝑤 in 𝔻. Setting 𝑤 = 0 in the preceding we find that

𝜓(𝑧) =
𝜓(0)

(1− 𝜑(0)𝑧)𝜅
.

Thus 𝜓 is of the form (5) with 𝑏 = 𝜓(0) and 𝑎0 = 𝜑(0). From (6) it follows that

1− 𝜑(𝑤)𝑧

1− 𝑎0𝑧
=

1− 𝜑(𝑧)𝑤

1− 𝑎0𝑤
.

Writing 𝜑(𝑧) = 𝑎0 + 𝑧𝜉(𝑧) where 𝜉 is analytic on 𝔻, we see that

(1− 𝑎0𝑧)𝜉(𝑧) = (1 − 𝑎0𝑤)𝜉(𝑤)

for all 𝑧, 𝑤 in 𝔻. Thus the function (1 − 𝑎0𝑧)𝜉(𝑧) is constant. Letting 𝜉(0) = 𝑎1,
we conclude that 𝜑 has the form (5).

Suppose that 𝜓 and 𝜑 are given by (5) and note that 𝑊 is normal if and only
if 𝐽𝑊𝑊 ∗𝐾𝑤 = 𝑊𝑊 ∗𝐽𝐾𝑤 for all 𝑤 in 𝔻. The preceding condition is equivalent
to asserting that

𝜓(𝑤)𝜓(𝑧)

1− 𝜑(𝑤)𝜑(𝑧)
=

𝜓(𝑤)𝜓(𝑧)

1− 𝜑(𝑤)𝜑(𝑧)

holds for all 𝑧, 𝑤 in 𝔻. Taking the reciprocal of the preceding and simplifying,
we see that equality holds for all 𝑧, 𝑤 if and only if either 𝑏 = 0 or 𝑏 ∕= 0 and
Im 𝑎0𝑎1 = (1− ∣𝑎0∣2) Im 𝑎0.
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We also note that 𝑊 = 𝑊 ∗ if and only if 𝑊𝐽𝐾𝑤 = 𝐽𝑊𝐾𝑤, which yields

𝜓(𝑧)𝐾𝑤(𝜑(𝑧)) = 𝜓(𝑧)𝐾𝑤(𝜑(𝑧)).

Setting 𝑤 = 0 in the preceding yields 𝜓(𝑧) = 𝜓(𝑧) so that 𝑎0 and 𝑏 are real. This
implies that 𝜑(𝑧) = 𝜑(𝑧) whence 𝑎1 is also real. Conversely, it is easy to see that
if 𝑎0, 𝑎1, and 𝑏 are real, then 𝑊 is Hermitian. □

It follows from the preceding that if 𝑎0, 𝑎1, 𝑏 are chosen so that 𝜑 maps
𝔻 into 𝔻 and so that (i) and (ii) both fail to hold, then the operator 𝑊𝜑,𝜓 :
𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) will be complex symmetric and non-normal. Moreover, the
operators produced by Proposition 2.9 include the Hermitian examples considered
in [4, 5].

Question 3. The detailed spectral structure of Hermitian weighted composition
operators 𝑊𝜑,𝜓 : 𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) with 𝜓 and 𝜑 given by (5) is studied in
[4, 5]. What is the corresponding spectral theory for the non-normal weighted
composition operators arising from Proposition 2.9?
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