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General Relativity and Gravitational Waves:

Session 1. Overview and Special Relativity

Thomas A. Moore — Les Houches — fJuly 3, 2018




- Overview of the Series

. Overview and Special Relativity
| 2. General Coordinates
| - . The 'Einstein Equation

. Solving the Einstein Equation

5. Gravitational Waves




 Overview of this session:

%* 1.3 Overview ofGeneral Relativity

' 1.4 The Geometmc Analogy and the Metric
Equauon —

! 1.5 Four-Vectors and Summation Notation
~ 1.6 Tensors and Covariant Equations

" 1.7 Maxwell’s Equations




. Special Relat1V1ty
i 1. The Pr1nc1p1e of Relat1v1ty
2. cis Frame- Independent

8 General ' Relativity:

B 3 The Geodesic Hypothesis
. The Principle of Coordmate
Independenee *




 The geodesic principle:

“A free obj’ect follows a geodesic in spacetime.”

Notes
1 A geodesm is the “straightest possible curve”

5 A “free” object is one that does not interact
~with anythmg else.

3 Thls only Works in spacetzme




Paths in Space and Spacetime:
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 What s frame-independent?

|I‘; |!|‘ I‘ |

freely-fall-
ing frame
near the

~ earth

frame floating in deep space

~_ % toward the edrth’s cehter
i. earth | : .' .
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- The Two Core Equations:

Einstein Equation: G,u . 8 ﬂGT/"V

r dZXa

. Geodesic Equation: — BT
. . e v

”Spacetzme tells matter how to move,
Matter tells spacetzme how to curve.’
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- Frame-independent separations:

In space: the Pythagorean Equation

Ad® = Ax® + Ay® = (Ax)* + (A’

In spacetime: the Metric Equation
Ar? = A2 — Ax®— Av?— AZ?
= (M) (Ay) (A2




- Proper time along a worldline:

oy




 Types of intervals

Timelike: At?2 — Az? — Ay? — Az2_ >0 =
Spacelike: A#? — Ax? — Ay? — A2* <0
Timelike: At2 — Azx?® — Ay? — Az =0

B Spacet1me separatlon |
| A - AR A AP —I—Az = A

 Timelike: As? <0
Spacelike: As? > 0
Timelike: As® =0




1.4.1 Exercise: The Three Kinds of Time.

Alice drives a race car around a track. Bob stands at a fixed position beside the track. Let event A be Alice
passing Bob the first time and event B be Alice passing Bob the next time. Both Alice and Bob measure the
time between these events with their watches. Now, Cara and David are riding a train whose track passes
very close to Bob’s position and which is moving at a constant velocity. It happens that Cara passes Bob
just as event A occurs and David passes Bob just as event B occurs. Cara and David note the times of these
events on their watches, which have been previously synchronized in the train frame. They determine the
time between the events by calculating the difference in the times they measure. (Assume that the ground
frame is adequately inertial for events occurring in a plane perpendicular to the earth’s gravitational field.)

(a) Who measures a coordinate time between these events in some inertial reference frame?

(b) Who measures a proper time between these events along a worldline that connects the events?
(c) Who measures the spacetime interval between the events?

(d) Who measures the shortest time interval between these events?

(e) Who measures the longest time interval between these events?

Choices are: A. Alice B. Bob C. Cara and David (A question may have multiple answers.)






Lorentz Transformation

AL ]
Az’
Ay’
_Az/_

o
Ax'
Ay’

_AZ,_

= At — .(/1_1)“1/ (A”, Ax®) which in turn implies that (/1_1)“’,/ =g




(1.16)

(1.17)
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- Four-Vectors

Alﬂ :".A,UJV AI/’

A2 - nwAHAV =A-A

-
dr =

dxH dx“'
dr dt

U U o nluz/u“u == nluz/
e dt dt
| i dt«/l—qﬂ /—1_,027

u

- p=mu => p —mu —m——
'- _ dT :




~ Gradient as a Covector

ob Ot oD Ot 9B Ot 9P Ot 9P
ot Ot 8t O0x' Or Oy Oy 0O Oz
y 0D O OP
o e g
- ).;jt ot ‘O " Oy

(A7 + (A7)

(8%

9!D = (A1), (95 0)




Grad1ent of a Four-Vector:
g A" — ) - ai (A7,4Y) = (A1)#, A%, (0,4Y) (1.27)
General Tensor Transformation Rule:

= T/a.”ﬁ“~. A Aa,u S (A_l)yﬂ S ..A’ya S




T m— e . g oy geoniiig U o D v - R SRl b ) @ g ¥ g P e 1 R PR © A
R e A e S R e o T Ly g O T PN Yok T 5 Gl X o e o iy bt
-~y | g ¥\ *

D S SN e = 1) e SN SR L I et s e
N e e T A A PR Py o Uy L e - 3

Tensor Operations

Tensor Product:
T/ = ARBY = (4, A4, B) *
= MG A(AB) = A AT (129)
~ Contraction:
| -'a_oz —1\v S o ) '_1/
R D ST T (130,31

- (These yield nothing useful: ZTW and ZTW)
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(A~12 Ac V(AP Ax'®

- [(/l._l)a,y(A_l)ﬂgnag]AZIJWAiE,0 . (1.33)

| 1, AT ALY = (A7, (A7 nag) Aa’H Aa

AR (A g AP EAYY (134

0= ip—= (A_l)a,u(‘/l—l)ﬁynaﬁ

= g, =l Y,




Inverse Metric:  n"“n,, = 0",

Contraction: A,=n,A" and B* :n“”B

Addition: = C'*=A* 4+ B'* = A* AY + A*_ B®
= A* (A” + BY) = A¥ CY

Tensor Addition: example:
Tensor Product: example:
Contraction: example:
Lowering indices: example:
Raising mdlces' example:
Renammg summed indices: example:




A tensor equation is absolute:
it has the same form in every inertial reference frame.

Example:

L) = Z(pp") = 0
‘drn’wpp —drp”p =

expresses the physical fact that the magnitude of a particle’s
four-momentum (its mass) is conserved in all frames.




* Some terminolo
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Free index

] oty ~ e e AT T
e e e e LT AP P LT L s

Bound index

A free _indéX tells you how many equations:

A =AY = Nt AL + N A® + g AY + e A
A:c == nacI/AV e nxtAt == nwax o nazyAy =+ nazzAz

Ay o= nyVAV e nytAt =

e nywa <

2 77yyAy 5 nyzAz

A4, = 7721/141/ = nztAt =

= nzmAx 2

B nzyAy e 77,2,2142




- Some terminology:

Terms ,

e S
g > ' |

E(mup“‘p”)me dr Ly > dT
o

Factors  Factors
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1. Free indices: | f _
* You can’t add or equate items with different numbers
and / or positions of free indices. '
» Free index names must agree

Bad: A*=p,A% AY=B" A =

- The only exception:

Zero has as many indices in whatever positions you want

'pfot'='o’ |
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2. Renaming free indices: You may rename a free index
with a different index name as long as:
 The name does not collide with any other free index
name or any bound index name
~* You rename every occurrence of that index name
Bad: A% = Ar A¥ 5 A= AR AV
AR = AR AY 5 Ale = fo AV
A, =n, 4" - A=n,A




3. Renaming bound indices: You may rename a bound index
with a different index name as long as:
* The name does not collide with any free index name or any
bound index name in the same term
* You rename both occurrences of that index name

Bad: 4" =4*4" — A" =4" A*

Good: C'* = A" + B'H = A* A” + A* B°
e e

4. When in doubt, write it out.



1.6.1 Exercise: Good or Bad? |

- Consider the equations listed below. Answer A = Violates Rule 1, B = Violates Rule 2, C = Violates Rule 3,

D = OK for each equation. For each acceptable equation, specify how many equations it implicitly represents
(A=1,B=4,C=16,D = 64, E = 256). |

(a) muoutu? = S

(b)) p© :muo‘d'g
(c) AO‘BAB = A’ a renamed to AO‘BAB = A’
(d) Mo (A1), = s, |
(e) np-VA“B” =0 renamed to 7,,A*B* =0
(t) % = g

, (g) TMVCV 5 Ta/ﬂ/ = Tvoz,u %2 O .
~(h) 0= UWA“B” + N 5AO‘CB renamed to 0=n,, A*BY + anAMCV




L g axw ell’S Equa’uons
Our Startmg pOlﬂt

Equations for a electrostatic ﬁeld:

g .
e —qV ¢ —Vi¢p = £
- . E0

dt

-~ We s»e"e-k tensor generalizations that reduce to these
. equations in the static limit.

~ What kind of quantity is the charge density?

s e




""".-';f”axwell’s equatmns .
t;’e current dens1ty four—vector

.H(

Define the four-current density J:

o= J"”-: pvz, JY = pvy, J*F = pu,.

e —J’t—th—WJ“"—w 0 =p
T = BT+ 4 = —yBp+ 0 =
J'Y = J¥ =0 |
'J/z»:l]z:o‘

‘So this quantity transforms like a four-vector

(Charge density is the time component of this four-vector)




axwell’s Equat1ons -

Generahzmg the P01sson equatlon;

Note that: —3,0" = —#9,9, = +0? /at2 _ V2
So Poisson’s equation generalizes to:

‘—(9H8.““Aa e
€0

~ or even more generally to
= ' 1
—0,(0" A% +b0°4*) = = J°
| 0
because
1

9 (8“At+b8tA“) . ae
: NEha & )

= —Vi%=—p
ARRAN =5 60_




axwell' S Equatmns

Generahzmg the force equatlon

First try: e _q O AP

dr
Note that for a particle at rest:
e 1,'uf’3. =w=u"=0 = e nttut.—l— 0= -1
S0 a better guess is: '
. .
W sora,

More general is:

dpa | .-a ' ‘ o




axwell' S Equatmns

Ccnstrammg i

Note that: |
| 4

G dp - dp >
SN e 5 5 2_ 5

~ So 1f we multiply both sides of
o
dr

dB
d
dOé

: (80‘A“ + ha“AO‘)
by | ﬂaﬂpﬁ = P =M, WC get
. 0 :l‘2"qm('(')lo‘A“ & ho" A% Juqu,

- soh=-1




axwell’s Equatmns -

Ccnstrammg |

: Slmﬂarly, ‘ : = A
E‘a oI = —0aB, (O A° +b<’9“A“) —040, ama — b, 0,0" A% |
0
(1 4 b)@ 0, 8“AO‘ |
 But -charge' conservation requiresthat
 0.J% = Op/Ot + 0J% [0z + DIV [y + DI 9z = O
sob=1




axwell’s Equat1ons

Fmal equatlons for the potentlal

So we have

. (8O‘A“ DFA,  B,(0%AF — 9FA%) = — J°
dT ;_ = = s ' €0

’Defme F”” ()”A” avAﬂ'

' /,L:t

=L

Yy

~ consistent with

b Vo




axwell’s Equatmns .
Fmal equatlons for the flelds .

So we have
dp - - o; | Qo Of=
—— =qF “uﬂ and o = ——J
dT N o €0
| The ﬁrst is the Lorentz force law:

dp

dT = q(Fxtut g Fwyuy + F**u,)

= 1
_q\/l = UQ( Ew(—l) + 0+ Bz?}y — Byvz)

:CI(_E:B(_l) +0+ 50y - B UZ) = qE; +q(V ¥




F1 ',}’fal equ at1 ons f or t 1 e 1 ej ff .

So we have

d—7_~: g and 0 F 1 = %J

The time component of the second is Gauss’s Law:

| - OE, E E t
O F™ + 0, F* + 0,F" + 0,F** = . _|_&_|_h:‘]_:£
dx Oy 0y €0 €0

~ The other components are the Ampere-Maxwell law.
The definitions of the field in terms of the potentials imply:

OXFH + QY FOH 4 gLEV = ()

~which yieldthé other two Maxwell equations.




- Summar Y

We have “ der1ved” Maxwell’s Equations by finding tensor

1.

2
4

. consistent wit

automatically

= consistent wit

consistent wit

generalizations of Newtonian equations for static fields that are:

consistent with the POR
h the idea that charge is a relativistic scalar

n charge conservation

h the idea that EM fields don’t affect a particle’s mass
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1.7.1 Exercise: Gauss’s law for the Magnetic Field.

Find one choice of values for the indices «, 1, and v in equation 1.66 that yields Gauss’s law for the magnetic
field. Are there other choices that yield the same? How many copies of this equation do you think we have

in equation 1.667

OOFH 4 §Y P 4 QP F" = (

y
b
o




