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Overview of this session:

1.3  Overview of General Relativity

1.4  The Geometric Analogy and the Metric 
       Equation

1.5  Four-Vectors and Summation Notation

1.6  Tensors and Covariant Equations

1.7  Maxwell’s Equations



Simple principles:

Special Relativity:
1. The Principle of Relativity
2. c is Frame-Independent

General Relativity:
3. The Geodesic Hypothesis
4. The Principle of Coordinate 

Independence



The geodesic principle:

“A free object follows a geodesic in spacetime.”

Notes:

1. A geodesic is the “straightest possible curve”
2. A “free” object is one that does not interact  

with anything else.
3. This only works in spacetime.



Paths in Space and Spacetime:
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What is frame-independent?
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Spacetime is Curved:
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The Two Core Equations:

Gμν = 8πGTμν

d2xα

dτ2
= Γα

μνuμuν

Einstein Equation:

Geodesic Equation:

“Spacetime tells matter how to move;
Matter tells spacetime how to curve.”



The Geometric Analogy

y t

x x

x’

x’

y’ t’

∆y ∆t

A A

B B

∆x ∆x
∆x’

∆x’

∆y’

∆t’
∆d

,T
Tx

wTx

Space Spacetime

(a) (b)



Frame-independent separations:

Δd2 = Δx2 + Δy2 = (Δx′�)2 + (Δy′�)2

In space:  the Pythagorean Equation

In spacetime:  the Metric Equation

Δτ2 = Δt2 − Δx2 − Δy2 − Δz2

= (Δt′�)2 − (Δx′�)2 − (Δy′�)2 − (Δz′�)2



Proper time along a worldline:

can calculate the coordinate-independent distance �d between the points from the coordinate-dependent
coordinate di↵erences as follows:

�d
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We call the corresponding equation in spacetime that allows us to connect frame-dependent coordinate
di↵erences to the frame-independent spacetime interval �⌧ between two events the metric equation:
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as long as we work in units where c = 1, meaning that we express time intervals in meters (where 1 m of
time ⌘ the time it takes light to travel 1 m of distance). We will use such units exclusively in what follows.

The minus signs that appear in the metric equation (which follow from the requirement that the speed
of light be the same in all frames) underlines the fact that our geometric analogy is not perfect, and reflects
the reality that we experience time very di↵erently than we experience space. (They are also responsible for
the fact that the x

0 coordinate axis tilts upward rather than downward in Figure 4b and other subtle issues
with the analogy that I won’t discuss here.)

Note that we can also use the metric equation to calculate proper times along an arbitrary worldline in the
same way that we use the pythagorean theorem to calculate pathlengths along arbitrary curves on a plane.
We divide the worldline into segments so short that each segment is essentially straight. The proper time
measured by a clock traveling along this segment of the should then be very nearly same as the spacetime
interval between its endpoints, and the approximation becomes exact as the segment becomes infinitesimal:
(d⌧
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2. To get the total proper time, we simply add up the infinitesimal
spacetime intervals along each segment:
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So if we know a clock’s speed v as a function of coordinate time t as evaluated an arbitrary but specific
inertial reference frame as the clock moves along a given worldline, we can calculate the time that the clock
will read at every event along that worldline.

Now, the spacetime interval �⌧ is physically meaningful only between events that can be connected by
a clock moving at less than the speed of light. It is certainly possible to find a pair of events (say a pair
of events that occur simultaneously in some inertial reference frame) where �t
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meaning that �⌧ would be imaginary. But (as we will see shortly) the value of �t
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a frame-independent value no matter what its sign might be. If its value is frame-independent, then so is its
sign, so we can classify pairs of events into frame-independent categories as follows:
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When events have a timelike separation, we have seen that we can measure the spacetime interval�⌧ between
them using a clock that travels between them. If events have a spacelike separation, we can measure their
spacetime separation �s

2 ⌘ ��t

2 +�x

2 +�y

2 +�z

2 by using a ruler to measure the distance between
them in an inertial frame where they occur at the same time. Since all observers will agree whether or not
a frame satisfies those criteria, and can look over each others’ shoulders to see what the ruler in that frame
measures, this is still a frame-independent number (as claimed). Events having a lightlike separation can be
connected by a traveling photon, and all observers can agree on whether that is possible too.

The majority (though not universal) convention in general relativity its to express the metric equation in
terms of the spacetime separation �s, not the spacetime interval �⌧ (though the term “spacetime interval”
is often loosely applied to both �s and �⌧). Therefore, we usually write the metric equation as
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and the event separation categories are

Timelike: �s

2
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2
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2 = 0
(1.8)
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Types of intervals:
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Spacetime separation:
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(1.6)

When events have a timelike separation, we have seen that we can measure the spacetime interval�⌧ between
them using a clock that travels between them. If events have a spacelike separation, we can measure their
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Exercise!
Let me emphasize again the importance of the metric equation. It is the key to connecting our arbitrary

human-defined coordinates to the physical reality that lies behind them. As our coordinate systems become
even more arbitrary in general relativity, the metric equation plays an even more central role. The interval
classifications also remain crucial, because they tell us whether a given pair of events can be connected by
an object traveling at less than the speed of light or not.

Let’s take a break now to consider our first exercise.

1.4.1 Exercise: The Three Kinds of Time.

Alice drives a race car around a track. Bob stands at a fixed position beside the track. Let event A be Alice
passing Bob the first time and event B be Alice passing Bob the next time. Both Alice and Bob measure the
time between these events with their watches. Now, Cara and David are riding a train whose track passes
very close to Bob’s position and which is moving at a constant velocity. It happens that Cara passes Bob
just as event A occurs and David passes Bob just as event B occurs. Cara and David note the times of these
events on their watches, which have been previously synchronized in the train frame. They determine the
time between the events by calculating the di↵erence in the times they measure. (Assume that the ground
frame is adequately inertial for events occurring in a plane perpendicular to the earth’s gravitational field.)

(a) Who measures a coordinate time between these events in some inertial reference frame?
(b) Who measures a proper time between these events along a worldline that connects the events?
(c) Who measures the spacetime interval between the events?
(d) Who measures the shortest time interval between these events?
(e) Who measures the longest time interval between these events?

Choices are: A. Alice B. Bob C. Cara and David (A question may have multiple answers.)

1.5 Four-Vectors

Consider now two inertial reference frames in standard orientation (each spatial axis of the primed frame
points in the same spatial direction as the corresponding axis in the unprimed frame, and the primed frame
moves along the common +x direction relative to the unprimed frame with a velocity x-component of �).
The Lorentz transformation equations state that, given an event, we can calculate its spacetime coordinates
in the primed frame from its coordinates in the unprimed frame or vice-versa as follows:

t

0 = �t� ��x

x

0 = ���t+ �x

y

0 = y

z

0 = z

t = �t

0 + ��x

0

x = ��t

0 + �x

0

y = y

0

z = z

0

(1.9)

where � ⌘ 1/
p

1� �

2. (Note that the fact that the inverse transformation simply involves flipping the sign
of � expresses the fundamental equivalence of the two frames: the only distinction between them is that we
have arbitrarily defined � to be the x-velocity of the primed frame relative to the unprimed frame rather
than the reverse.) Define 16-component objects labeled with two indices as follows

⇤

µ

⌫

=

2

664

⌫=t x y z

µ=t � ��� 0 0
x ��� � 0 0
y 0 0 1 0
z 0 0 0 1

3

775 (⇤�1)µ
⌫

=

2

664

⌫=t x y z

µ=t � �� 0 0
x �� � 0 0
y 0 0 1 0
z 0 0 0 1

3

775 (1.10)

where each greek index ranges over the four possible values t, x, y, z. (The reason that one index is super-
scripted as opposed to subscripted will be clearer shortly.) Similarly, we can abstractly write one of the
coordinates in the form x

µ, where x

t ⌘ t, x

x ⌘ x, x

y ⌘ y, z

z ⌘ z. (Again, these are superscripted indices,
not exponents.) We can therefore write the Lorentz transformation equations in compact form as follows:

x

0µ =
X

⌫=t,x,y,z

⇤

µ

⌫

x

⌫ and x

µ =
X

⌫=t,x,y,z

(⇤�1)µ
⌫

x

0 ⌫ (1.11)

We can write this even more compactly if we adopt the Einstein summation convention, which states
that when the same index appears in both an upper and lower position, we should assume that we are
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summing over that index. Adopting this convention means that we can write the Lorentz transformation
and its inverse using this index notation in the very compact form

x

0µ = ⇤

µ

⌫

x

⌫ and x

µ = (⇤�1)µ
⌫

x

0 ⌫ (1.12)

Since the Lorentz transformation is linear, the same equations apply to the coordinate di↵erences between
an arbitrary pair of events:

�x

0µ = ⇤

µ

⌫

�x

⌫ and �x

µ = (⇤�1)µ
⌫

�x

0 ⌫ (1.13)

These equations are equivalent to the matrix equations

2

664

�t

0

�x

0

�y

0

�z

0

3

775 =

2

664

� ��� 0 0
��� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

�x

�y

�z

3

775 and

2

664

�t

�x

�y

�z

3

775 =

2

664

� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

0

�x

0

�y

0

�z

0

3

775 (1.14)

but are more compact, the index notation o↵ers more flexibility for defining the sums than matrix notation,
flexibility that we will need in general relativity. But with the matrix equivalent in mind, you can easily
show that the inverse is really an inverse:

�x

µ = (⇤�1)µ
⌫

(⇤⌫

↵

�x

↵) which in turn implies that (⇤�1)µ
⌫

⇤

⌫

↵

= �

µ

↵

(1.15)

where the Kronecker delta �

µ

↵

is defined to be 1 when µ = ↵ and 0 otherwise, making it the index-notation
equivalent to the identity matrix.

We can write the metric equation in a similarly compact form if we define a matrix object called the
metric tensor to be

⌘

µ⌫

⌘

2

664

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 (1.16)

We can then write the metric equation using index notation simply as

�s

2 = ⌘

µ⌫

�x

µ

�x

⌫ (1.17)

One might consider this overkill for such a simple equation, but we will see this to be essential in general
relativity.

Now, just as we can consider the set of coordinate di↵erences�x,�y, and�z to be the three components of
a an ordinary displacement vector �~r, we can consider the set of coordinate di↵erences �t,�x,�y, and�z to
be the four components of a four-displacement vector �s . Indeed, we can define an arbitrary four-vector
A to be any set of four components At

, A

x

, A

y

, A

z that transform in the same way that the components of
the four-displacement do:

A

0µ = ⇤

µ

⌫

A

⌫ (1.18)

(Note that it is conventional to use a bold ital ic sans-ser i f font for four-vector symbols.) For the same
mathematical reason that the squared spacetime separation �s

2 = ⌘

µ⌫

�x

µ

�x

⌫ is a frame-independent
combination of the components of the four-displacement �s , the squared magnitude

A

2 ⌘ ⌘

µ⌫

A

µ

A

⌫ ⌘ A ⇧
A (1.19)

of the four-vector A is also a frame-independent number.
Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,

whose components we define (in index notation) to be

u

↵ ⌘ dx

↵

d⌧

(1.20)

Since the di↵erential proper time d⌧ between infinitesimally separated events along any worldline is frame
independent, the ratio dx

↵

/d⌧ must transform as its numerator does, and since the numerator is a di↵erential
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of the four-vector A is also a frame-independent number.
Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,

whose components we define (in index notation) to be

u
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of the four-vector A is also a frame-independent number.
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One might consider this overkill for such a simple equation, but we will see this to be essential in general
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a an ordinary displacement vector �~r, we can consider the set of coordinate di↵erences �t,�x,�y, and�z to
be the four components of a four-displacement vector �s . Indeed, we can define an arbitrary four-vector
A to be any set of four components At

, A

x

, A

y

, A

z that transform in the same way that the components of
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of the four-vector A is also a frame-independent number.
Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,
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independent, the ratio dx

↵

/d⌧ must transform as its numerator does, and since the numerator is a di↵erential

9



Four-Vectors

summing over that index. Adopting this convention means that we can write the Lorentz transformation
and its inverse using this index notation in the very compact form

x

0µ = ⇤

µ

⌫

x

⌫ and x

µ = (⇤�1)µ
⌫

x

0 ⌫ (1.12)

Since the Lorentz transformation is linear, the same equations apply to the coordinate di↵erences between
an arbitrary pair of events:

�x

0µ = ⇤

µ

⌫

�x

⌫ and �x

µ = (⇤�1)µ
⌫

�x

0 ⌫ (1.13)

These equations are equivalent to the matrix equations

2

664

�t

0

�x

0

�y

0

�z

0

3

775 =

2

664

� ��� 0 0
��� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

�x

�y

�z

3

775 and

2

664

�t

�x

�y

�z

3

775 =

2

664

� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

0

�x

0

�y

0

�z

0

3

775 (1.14)

but are more compact, the index notation o↵ers more flexibility for defining the sums than matrix notation,
flexibility that we will need in general relativity. But with the matrix equivalent in mind, you can easily
show that the inverse is really an inverse:

�x

µ = (⇤�1)µ
⌫

(⇤⌫

↵

�x

↵) which in turn implies that (⇤�1)µ
⌫

⇤

⌫

↵

= �

µ

↵

(1.15)

where the Kronecker delta �

µ

↵

is defined to be 1 when µ = ↵ and 0 otherwise, making it the index-notation
equivalent to the identity matrix.

We can write the metric equation in a similarly compact form if we define a matrix object called the
metric tensor to be

⌘

µ⌫

⌘

2

664

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 (1.16)

We can then write the metric equation using index notation simply as

�s

2 = ⌘

µ⌫

�x

µ

�x

⌫ (1.17)

One might consider this overkill for such a simple equation, but we will see this to be essential in general
relativity.

Now, just as we can consider the set of coordinate di↵erences�x,�y, and�z to be the three components of
a an ordinary displacement vector �~r, we can consider the set of coordinate di↵erences �t,�x,�y, and�z to
be the four components of a four-displacement vector �s . Indeed, we can define an arbitrary four-vector
A to be any set of four components At

, A

x

, A

y

, A

z that transform in the same way that the components of
the four-displacement do:

A

0µ = ⇤

µ

⌫

A

⌫ (1.18)

(Note that it is conventional to use a bold ital ic sans-ser i f font for four-vector symbols.) For the same
mathematical reason that the squared spacetime separation �s

2 = ⌘

µ⌫

�x

µ

�x

⌫ is a frame-independent
combination of the components of the four-displacement �s , the squared magnitude

A

2 ⌘ ⌘

µ⌫

A

µ

A

⌫ ⌘ A ⇧
A (1.19)
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Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,

whose components we define (in index notation) to be

u

↵ ⌘ dx

↵

d⌧

(1.20)

Since the di↵erential proper time d⌧ between infinitesimally separated events along any worldline is frame
independent, the ratio dx

↵

/d⌧ must transform as its numerator does, and since the numerator is a di↵erential

9

summing over that index. Adopting this convention means that we can write the Lorentz transformation
and its inverse using this index notation in the very compact form

x

0µ = ⇤

µ

⌫

x

⌫ and x

µ = (⇤�1)µ
⌫

x

0 ⌫ (1.12)

Since the Lorentz transformation is linear, the same equations apply to the coordinate di↵erences between
an arbitrary pair of events:

�x

0µ = ⇤

µ

⌫

�x

⌫ and �x

µ = (⇤�1)µ
⌫

�x

0 ⌫ (1.13)

These equations are equivalent to the matrix equations

2

664

�t

0

�x

0

�y

0

�z

0

3

775 =

2

664

� ��� 0 0
��� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

�x

�y

�z

3

775 and

2

664

�t

�x

�y

�z

3

775 =

2

664

� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

0

�x

0

�y

0

�z

0

3

775 (1.14)

but are more compact, the index notation o↵ers more flexibility for defining the sums than matrix notation,
flexibility that we will need in general relativity. But with the matrix equivalent in mind, you can easily
show that the inverse is really an inverse:

�x

µ = (⇤�1)µ
⌫

(⇤⌫

↵

�x

↵) which in turn implies that (⇤�1)µ
⌫

⇤

⌫

↵

= �

µ

↵

(1.15)

where the Kronecker delta �

µ

↵

is defined to be 1 when µ = ↵ and 0 otherwise, making it the index-notation
equivalent to the identity matrix.

We can write the metric equation in a similarly compact form if we define a matrix object called the
metric tensor to be

⌘

µ⌫

⌘

2

664

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 (1.16)

We can then write the metric equation using index notation simply as

�s

2 = ⌘

µ⌫

�x

µ

�x

⌫ (1.17)

One might consider this overkill for such a simple equation, but we will see this to be essential in general
relativity.

Now, just as we can consider the set of coordinate di↵erences�x,�y, and�z to be the three components of
a an ordinary displacement vector �~r, we can consider the set of coordinate di↵erences �t,�x,�y, and�z to
be the four components of a four-displacement vector �s . Indeed, we can define an arbitrary four-vector
A to be any set of four components At

, A

x

, A

y

, A

z that transform in the same way that the components of
the four-displacement do:

A

0µ = ⇤

µ

⌫

A

⌫ (1.18)

(Note that it is conventional to use a bold ital ic sans-ser i f font for four-vector symbols.) For the same
mathematical reason that the squared spacetime separation �s

2 = ⌘

µ⌫

�x

µ

�x

⌫ is a frame-independent
combination of the components of the four-displacement �s , the squared magnitude

A

2 ⌘ ⌘

µ⌫

A

µ

A

⌫ ⌘ A ⇧
A (1.19)

of the four-vector A is also a frame-independent number.
Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,

whose components we define (in index notation) to be

u

↵ ⌘ dx

↵

d⌧

(1.20)

Since the di↵erential proper time d⌧ between infinitesimally separated events along any worldline is frame
independent, the ratio dx

↵

/d⌧ must transform as its numerator does, and since the numerator is a di↵erential

9

summing over that index. Adopting this convention means that we can write the Lorentz transformation
and its inverse using this index notation in the very compact form

x

0µ = ⇤

µ

⌫

x

⌫ and x

µ = (⇤�1)µ
⌫

x

0 ⌫ (1.12)

Since the Lorentz transformation is linear, the same equations apply to the coordinate di↵erences between
an arbitrary pair of events:

�x

0µ = ⇤

µ

⌫

�x

⌫ and �x

µ = (⇤�1)µ
⌫

�x

0 ⌫ (1.13)

These equations are equivalent to the matrix equations

2

664

�t

0

�x

0

�y

0

�z

0

3

775 =

2

664

� ��� 0 0
��� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

�x

�y

�z

3

775 and

2

664

�t

�x

�y

�z

3

775 =

2

664

� �� 0 0
�� � 0 0
0 0 1 0
0 0 0 1

3

775

2

664

�t

0

�x

0

�y

0

�z

0

3

775 (1.14)

but are more compact, the index notation o↵ers more flexibility for defining the sums than matrix notation,
flexibility that we will need in general relativity. But with the matrix equivalent in mind, you can easily
show that the inverse is really an inverse:
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where the Kronecker delta �

µ

↵

is defined to be 1 when µ = ↵ and 0 otherwise, making it the index-notation
equivalent to the identity matrix.

We can write the metric equation in a similarly compact form if we define a matrix object called the
metric tensor to be
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We can then write the metric equation using index notation simply as
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One might consider this overkill for such a simple equation, but we will see this to be essential in general
relativity.

Now, just as we can consider the set of coordinate di↵erences�x,�y, and�z to be the three components of
a an ordinary displacement vector �~r, we can consider the set of coordinate di↵erences �t,�x,�y, and�z to
be the four components of a four-displacement vector �s . Indeed, we can define an arbitrary four-vector
A to be any set of four components At
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z that transform in the same way that the components of
the four-displacement do:
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(Note that it is conventional to use a bold ital ic sans-ser i f font for four-vector symbols.) For the same
mathematical reason that the squared spacetime separation �s
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of the four-vector A is also a frame-independent number.
Perhaps the most important four-vector for our future purposes is the four-velocity u of a particle,

whose components we define (in index notation) to be
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Since the di↵erential proper time d⌧ between infinitesimally separated events along any worldline is frame
independent, the ratio dx

↵

/d⌧ must transform as its numerator does, and since the numerator is a di↵erential
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as

p = mu ) p
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↵ = m

dx

↵

d⌧

) p

⇧
p = m

2(u ⇧
u) = m

2(�1) = �m

2 (1.24)

where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
1� v

2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/

p
1� v

2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v

x

, v

y

, v

z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t

0
, @t/@x

0
, @t/@y

0
, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.

How does the four-gradient @
↵

A

� of a four-vector field A transform? The transformation rules imply that
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
1� v

2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/

p
1� v

2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v

x

, v

y

, v

z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have

@�

@t

0 =
@t

@t

0
@�

@t

+
@t

@x

0
@�

@x

+
@t

@y

0
@�

@y

+
@t

@z

0
@�

@z

= (⇤�1)t
t

@�

@t

+ (⇤�1)x
t

@�

@x

+ (⇤�1)y
t

@�

@y

+ (⇤�1)z
t

@�

@z

(1.25)

since evaluating @t/@t

0
, @t/@x

0
, @t/@y

0
, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.

How does the four-gradient @
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� of a four-vector field A transform? The transformation rules imply that
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is

u

⇧
u = ⌘

µ⌫

u

µ

u

⌫ = ⌘

µ⌫

dx

µ

d⌧

dx

µ

d⌧

=
⌘

µ⌫

dx

µ

dx

⌫

d⌧

2

=
�d⌧

2

d⌧

2

= �1 (1.21)

by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
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2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/
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2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v
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, v

z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t

0
, @t/@x

0
, @t/@y

0
, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.

How does the four-gradient @
↵

A

� of a four-vector field A transform? The transformation rules imply that
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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Gradient as a Covector

four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
1� v

2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/

p
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2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v
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z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t
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, @t/@x

0
, @t/@y

0
, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.

How does the four-gradient @
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� of a four-vector field A transform? The transformation rules imply that
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
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2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/
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2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v
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not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @
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these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t
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, @t/@x

0
, @t/@y
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, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.

How does the four-gradient @
↵

A

� of a four-vector field A transform? The transformation rules imply that

@

0
↵

A

0 � = (⇤�1)µ
↵

@

@x

µ

�
⇤

�

⌫

A

⌫

�
= (⇤�1)µ

↵

⇤

�

⌫

(@
µ

A

⌫) (1.27)

because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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by the definition of d⌧ . In a coordinate system where the particle’s ordinary speed is v, note that
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
1� v

2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/

p
1� v

2.

1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v

x

, v

y

, v

z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t
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, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a

10



Tensors

four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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so the components of the four-vector are
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
1� v

2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/
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1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v
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not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @

↵

� ⌘ @�/@x

↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t
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, and @t/@z

0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.
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because the coe�cients ⇤�
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of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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four-displacement component, it (and thus the whole ratio) transforms as the components of a four-vector
should when we change reference frames. The frame-independent squared magnitude of this four-vector is
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and similarly for uy and u

z. Note that for low speeds, ut ! 1 and the spatial components become approxi-
mately equal to the components of the particle’s ordinary velocity. In a frame where the particle is at rest,
we have strictly u

t = 1, ux = u

y = u

z = 0.
Another important four vector is a particle’s four-momentum p, defined as
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where m is the particle’s frame-independent mass (rest-energy). The time component of this vector in a
given frame is the particle’s relativistic energy E ⌘ m/

p
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2 in that frame, while its spatial components
are the components of its relativistic momentum 3-vector ~p ⌘ m~v/
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1.5.1 Exercise: Ordinary velocity

How can we calculate components of a particle’s ordinary velocity ~v from components of its four-velocity u?
Also, why are the set of components 1, v
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z

not the components of a four-vector?

1.6 Tensors and Covariant Equations

Consider now a frame-independent (scalar) field �(t, x, y, z) (describing something perhaps like temperature
as a function of position and time). The four-gradient @
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↵ has four components, but how do
these components transform as we change reference frames? Consider the time component of this object in
the primed reference frame. According to the rules of multivariable calculus, we have
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since evaluating @t/@t
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0 involves taking partial derivatives of the inverse Lorentz
transformation equations and those partials yield simply the constant coe�cients of that linear transforma-
tion. Similar expressions apply to the other components, so we can compactly write
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So the gradient of a frame-independent field does not transform like a four-vector, but has a closely related
and similarly simple transformation law. We call any set of four components that transform according to an
inverse Lorentz transformation a covector.
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because the coe�cients ⇤�

⌫

of the Lorentz transformation do not themselves depend on position. This 16-
component quantity therefore also has a simple transformation law, which involves a Lorentz transformation
factor for a superscript index and an inverse Lorentz transformation for the subscript index. We call such a
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quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T
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· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:
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So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as
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because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that
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Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:
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quantity a second-rank tensor. By analogy, we define an nth-rank tensor T
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that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A
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⌫ of two four-vectors A
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So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵
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with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
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because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to
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So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
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produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘
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Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:
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⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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Tensor Product:

quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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(1.29)

Contraction:

quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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(1.30, 31)

quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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(These yield nothing useful: ) 



The Metric is a tensor

quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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quantity a second-rank tensor. By analogy, we define an nth-rank tensor T

↵··· �···
�··· to be an n-index

object (with 4n components) that transforms according to

T

0↵··· �···
�··· = ⇤

↵

µ

· · · (⇤�1)⌫
�

· · ·⇤�

�

· · ·Tµ··· �···
⌫··· (1.28)

that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ

↵

⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)
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object (with 4n components) that transforms according to
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↵

µ
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that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤
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↵
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⌫
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So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫
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⌫

µ

T
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⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵
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� = ⌘

↵�
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0 �(⇤�1)�
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0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
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µ
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⌫

⌘
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]�x

0µ
�x

0 ⌫ (1.34)
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object (with 4n components) that transforms according to
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that is, a Lorentz-transformation factor for every upper (superscript) index and an inverse-Lorentz-transformation
factor for every lower (subscript) index. The vertical position of tensor indices therefore carries very impor-
tant information about how the tensor transforms. The horizontal position of the indices on some tensors
can also be physically significant, an issue which we will consider in more depth later.

The “tensor” concept generalizes and extends the the four-vector/covector concept. Indeed, a four-vector
is a rank-one tensor with one upper index. A covector is a rank-one tensor with one lower index. A scalar
(frame-independent quantity) is a zero-rank tensor.

The gradient of a four-vector is one example of an operation that combines tensors to yield another
tensor. Another example is what we can call the tensor product A

µ

B

⌫ of two four-vectors A

µ and B

⌫ .
This is a 16-component object whose µ-⌫ component is the product of the µth component of A and the ⌫th
component of B. It transforms as follows:

T

0µ⌫ ⌘ A

0µ
B

0 ⌫ = (⇤µ

↵

A

↵)(⇤⌫

�

B

�) = ⇤

µ

↵

⇤

⌫

�

(A↵

B

�) = ⇤

µ
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⇤

⌫

�

T

↵� (1.29)

So the tensor product of four-vectors is indeed a second-rank tensor with two upper indices.
Another tensor operation is summing over an upper and lower index (a process we call contraction over

those indices). Consider a second-rank tensor object T↵

�

with one upper and one lower index, and suppose
that we sum over the upper and lower index (if we imagine the components of T arranged in a matrix, this
would be the same as summing the matrix’s diagonal elements). This operation produces a one-component
object that transforms as

T

0↵
↵

= ⇤

↵

µ

(⇤�1)⌫
↵

T

µ

⌫

= �

⌫

µ

T

µ

⌫

(1.30)

because the matrix product of the inverse Lorentz transformation and the Lorentz transformation is the
identity matrix, which in index notation is the Kronecker delta (summing the Lorentz transformation coef-
ficients over the ↵ index is equivalent to doing a matrix product in the order [⇤�1][⇤]. But if we now sum
over, say, the µ index, only the terms with ⌫ = µ are nonzero, meaning that the expression above reduces to

T

0↵
↵

= T

⌫

⌫

(1.31)

So the value of the contracted tensor is frame-independent : it is indeed a zeroth-rank tensor (scalar). Gen-
erally, summing over an upper and lower index of a nth-rank tensor produces a new tensor with rank n� 2.
This is why the Einstein summation convention is specific about summing over one upper and one lower
index: as you can easily show, the sums

X
T

µµ

and
X

T

µµ (1.32)

produce single numbers, but these numbers are not frame-independent scalars (they are not tensors).
Now, as its name indicates, the metric tensor ⌘

µ⌫

is a second-rank tensor with two lower indices. Here
is how we can prove it. (The process will also nicely illustrate some issues about using index notation that
will be useful to us as we go along.) The invariance of the spacetime separation implies that

⌘

µ⌫

�x

0µ
�x

0 ⌫ = ⌘

↵�

�x

↵

�x

� = ⌘

↵�

(⇤�1)↵
�

�x

0 �(⇤�1)�
�

�x

0� = [(⇤�1)↵
�

(⇤�1)�
�

⌘

↵�

]�x

0 �
�x

0� (1.33)

Note that we can freely rearrange the order of items because in each term of the implied sums, the items are
simply numerical values, and multiplication is commutative. Also, because addition is associative, it does
not matter in which order we perform the implied sums (over 16 terms on the left side, 256 terms on the
right side). This flexibility is what makes index notation much easier than matrix notation for dealing with
equations like this. Another flexibility is that the name we give to a summed index is completely arbitrary.
It is good practice (as I have done initially) to keep index names distinct. But one can take advantage of
the arbitrary nature of index names to rename summed indices in convenient ways, as long as we don’t give
indices that describe distinct sums the same index names (as then it becomes ambiguous about what exactly
we are summing over). In this particular case, we can rename the sum over the � index on the right side so
that it becomes a sum over a µ index, and similarly rename � ! ⌫:

⌘

µ⌫

�x

0µ
�x

0 ⌫ = [(⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ or 0 = [⌘
µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

]�x

0µ
�x

0 ⌫ (1.34)

11

(1.33)

In this case, renaming allows us to subtract the left side from the right side and pull out the common
factor of �x

0µ
�x

0 ⌫ from both terms. We cannot simply now divide through by �x

0µ
�x

0 ⌫ because we are
summing over µ and ⌫ and a sum can be zero even though individual terms in the sum are not. But in this
case, we know that the sum must be zero no matter what the values of the coordinate di↵erences �x

0µ and
�x

0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y

0 = �z

0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have

0 = ⌘

µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

) ⌘

µ⌫

= (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

(1.35)

The metric tensor ⌘

µ⌫

by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �

µ

⌫

transforms like a second-rank tensor with
one upper and one lower index, and that the matrix inverse ⌘

µ⌫ of the metric tensor, defined such that

⌘

µ↵

⌘

↵⌫

= �

µ

⌫

(1.36)

(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations

A

µ

= ⌘

µ⌫

A

⌫ and B

µ = ⌘

µ⌫

B

⌫

(1.37)

produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A

µ +B

µ transforms like

C

0µ = A

0µ +B

0µ = ⇤

µ

⌫

A

⌫ + ⇤

µ

↵

B

↵ = ⇤

µ

⌫

(A⌫ +B

⌫) = ⇤

µ

⌫

C

⌫ (1.38)

In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:

Tensor Addition: example: pµ
tot

= p

µ

1

+ p

µ

2

Tensor Product: example: Aµ

B

⌫ = T

µ⌫

Contraction: example: �µ
µ

= 4
Lowering indices: example: A

µ

= ⌘

µ⌫

A

⌫

Raising indices: example: Bµ = ⌘

µ⌫

B

⌫

Renaming summed indices: example: �µ
µ

= �

⌫

⌫

= 4

The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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In this case, renaming allows us to subtract the left side from the right side and pull out the common
factor of �x

0µ
�x

0 ⌫ from both terms. We cannot simply now divide through by �x

0µ
�x

0 ⌫ because we are
summing over µ and ⌫ and a sum can be zero even though individual terms in the sum are not. But in this
case, we know that the sum must be zero no matter what the values of the coordinate di↵erences �x

0µ and
�x

0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y

0 = �z

0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have
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The metric tensor ⌘

µ⌫

by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �

µ

⌫

transforms like a second-rank tensor with
one upper and one lower index, and that the matrix inverse ⌘

µ⌫ of the metric tensor, defined such that

⌘
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(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations

A

µ

= ⌘

µ⌫

A

⌫ and B
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⌫

(1.37)

produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A

µ +B

µ transforms like

C

0µ = A

0µ +B

0µ = ⇤
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:

Tensor Addition: example: pµ
tot

= p

µ

1

+ p

µ

2

Tensor Product: example: Aµ

B

⌫ = T

µ⌫

Contraction: example: �µ
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= 4
Lowering indices: example: A

µ

= ⌘
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⌫

Raising indices: example: Bµ = ⌘
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⌫

Renaming summed indices: example: �µ
µ

= �

⌫

⌫

= 4

The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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In this case, renaming allows us to subtract the left side from the right side and pull out the common
factor of �x

0µ
�x

0 ⌫ from both terms. We cannot simply now divide through by �x

0µ
�x

0 ⌫ because we are
summing over µ and ⌫ and a sum can be zero even though individual terms in the sum are not. But in this
case, we know that the sum must be zero no matter what the values of the coordinate di↵erences �x

0µ and
�x

0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y

0 = �z

0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have
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The metric tensor ⌘

µ⌫

by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �

µ

⌫

transforms like a second-rank tensor with
one upper and one lower index, and that the matrix inverse ⌘

µ⌫ of the metric tensor, defined such that
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(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations
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⌫ and B
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(1.37)

produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:
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The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y
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0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have
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The metric tensor ⌘
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by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �
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(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations
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⌫ and B
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produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:
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The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ
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⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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summing over µ and ⌫ and a sum can be zero even though individual terms in the sum are not. But in this
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0µ and
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0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y

0 = �z

0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have
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The metric tensor ⌘

µ⌫

by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �
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⌫

transforms like a second-rank tensor with
one upper and one lower index, and that the matrix inverse ⌘
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(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations

A
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⌫ and B
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produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:
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The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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factor of �x
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0 ⌫ from both terms. We cannot simply now divide through by �x
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0 ⌫ because we are
summing over µ and ⌫ and a sum can be zero even though individual terms in the sum are not. But in this
case, we know that the sum must be zero no matter what the values of the coordinate di↵erences �x

0µ and
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0 ⌫ might actually have. Indeed, we can judiciously choose pairs of events to isolate terms in the sums to
prove that in fact the quantity in square brackets must be zero for every possible choice of µ and ⌫. For
example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t

0-direction: �x

0 = �y

0 = �z

0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have
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The metric tensor ⌘

µ⌫

by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �

µ

⌫

transforms like a second-rank tensor with
one upper and one lower index, and that the matrix inverse ⌘

µ⌫ of the metric tensor, defined such that
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(and which happens in special relativity to have the same components as ⌘
µ⌫

) transforms like a second-rank
tensor with two upper indices. Finally, since the tensor product and contraction operations produce tensors,
we see that the operations
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⌫ and B
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produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.

So, to summarize, we have a well-defined set of operations on tensors that produce tensors:

Tensor Addition: example: pµ
tot
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1
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The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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example, suppose that I choose a pair of events that have coordinate separation in the primed frame that
is purely in the t
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0 = 0. Then all terms in the sum above except the term with
µ = ⌫ = t are zero, and we see that the t-t component of the term in the bracket must be zero. We can
similarly constrain all the other components. So because the original equation must work for all possible
event coordinate-separations, we must have

0 = ⌘

µ⌫

� (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

) ⌘

µ⌫

= (⇤�1)↵
µ

(⇤�1)�
⌫

⌘

↵�

(1.35)

The metric tensor ⌘
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by definition has the same components in every inertial reference frame, and the
equation above shows that this is consistent with its being a second-rank tensor with two lower indices.

In a similar way, one can show that the Kronecker delta �
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(and which happens in special relativity to have the same components as ⌘
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we see that the operations
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produce a covector representation of the four-vector A and a four-vector representation of the covector B.
We can also add tensors that have the same rank and index position. For example, the set of four

components Cµ ⌘ A
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In the next-to-last step, I renamed the summed ↵ index to ⌫) so that I could pull out the common Lorentz
transformation coe�cient. We see that this equation implies that the four components Cµ really do transform
like the components of a first-rank tensor C. You can see that a similar proof will apply to other tensor sums
as long as the number and positions of the indices are the same.
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The importance of all of this is that if we create a tensor equation (for example A

µ = B

µ or any of the
equations above), we can be assured that if it is true in any one inertial reference frame it is true in every
inertial reference frame. This is because if we change reference frames, the component(s) on the right side of
the equation transform in exactly the same way as the components on the left side. (Of course, the tensor
on the right side of the equation must have the same number of indices and in the same positions for this
to work: equating a second-rank tensor to a scalar, for example, would make no sense.) This means that we
can write absolute physics equations that work in every inertial reference frame. For example, the tensor
equation d(⌘

µ⌫

p

µ

p

⌫)/d⌧ = d(p
µ

p

⌫)/d⌧ = 0, which says that the magnitude of a particle’s four-momentum
(its mass) does not change in time, works in every inertial frame, no matter what the components of the
four-momentum might be in that particular frame. This allows us to compactly and generally state physical
laws that are automatically consistent with the principle of relativity. This is extremely powerful, as we will
see shortly.

But before we get to that, I want to point out that if you are new to index notation, one can easily
write equations that superficially look good but are nonsense, or perform operations that turn perfectly
good equations into nonsense.
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Why tensors?

A tensor equation is absolute:
it has the same form in every inertial reference frame.

Example:
d
dτ

(ημνpμpν) =
d
dτ

(pμpμ) = 0

expresses the physical fact that the magnitude of a particle’s
four-momentum (its mass) is conserved in all frames.



Some terminology:In a moment, I am going to give you some rules that will help you avoid making mistakes. But first
of all, let me define some terms. A bound index in an equation is an index that we are summing over,
while a free index can take on any of its four possible values that we choose. For example in the equation
A

µ

= ⌘

µ⌫

A

⌫ , the µ index is free while the ⌫ index is bound. The fact that we can arbitrarily choose the
value of the µ index means that this compact tensor equation stands for four component equations:

A

t

= ⌘

t⌫

A

⌫ = ⌘

tt

A

t + ⌘

tx

A

x + ⌘

tx

A

y + ⌘

tz

A

z

A

x

= ⌘

x⌫

A

⌫ = ⌘

xt

A

t + ⌘

xx

A

x + ⌘

xy

A

y + ⌘

xz

A

z

A

y

= ⌘

y⌫

A

⌫ = ⌘

yt

A

t + ⌘

yx

A

x + ⌘

yy

A

y + ⌘

yz

A

z

A

z

= ⌘

z⌫

A

⌫ = ⌘

zt

A

t + ⌘

zx

A

x + ⌘

zy

A

y + ⌘

zz

A

z

(1.39)

Secondly, in an equation in which there is an explicit sum, for example
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:

Bad: A

2 = ⌘

µ⌫

A

↵�

, A

µ = B

⌫

, A

µ

= B

µ (1.41)

The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:

Bad: A

0µ = ⇤

µ
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⌫ ! A
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A
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3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ

Bad: A

0µ = ⇤

µ

⌫

A

⌫ ! A

0µ = ⇤

µ

µ

A

µ (1.43)

confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.

Time for another exercise!

13

In a moment, I am going to give you some rules that will help you avoid making mistakes. But first
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Secondly, in an equation in which there is an explicit sum, for example
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:
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The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:
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3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ

Bad: A
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⌫ ! A

0µ = ⇤

µ

µ

A

µ (1.43)

confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.

Time for another exercise!
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Some terminology:
In a moment, I am going to give you some rules that will help you avoid making mistakes. But first

of all, let me define some terms. A bound index in an equation is an index that we are summing over,
while a free index can take on any of its four possible values that we choose. For example in the equation
A

µ

= ⌘
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⌫ , the µ index is free while the ⌫ index is bound. The fact that we can arbitrarily choose the
value of the µ index means that this compact tensor equation stands for four component equations:
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Secondly, in an equation in which there is an explicit sum, for example
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:

Bad: A

2 = ⌘

µ⌫

A

↵�

, A

µ = B

⌫

, A

µ

= B

µ (1.41)

The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:
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0µ = ⇤

µ

⌫

A

⌫ ! A

0↵ = ⇤
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A

⌫ Good: A
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⌫ (1.42)

3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ

Bad: A

0µ = ⇤

µ

⌫

A

⌫ ! A

0µ = ⇤

µ

µ

A

µ (1.43)

confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.

Time for another exercise!
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The Rules

1.  Free indices:
• You can’t add or equate items with different numbers  

and/or positions of free indices.
• Free index names must agree

 Bad: A2 = ημνAαβ Aμ = Bν Aμ = Bμ

 The only exception:

pμ
tot = 0

 Zero has as many indices in whatever positions you want



The Rules
2.  Renaming free indices:  You may rename a free index  
     with a different index name as long as:

• The name does not collide with any other free index 
name or any bound index name

• You rename every occurrence of that index name
 Bad:

In a moment, I am going to give you some rules that will help you avoid making mistakes. But first
of all, let me define some terms. A bound index in an equation is an index that we are summing over,
while a free index can take on any of its four possible values that we choose. For example in the equation
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⌫ , the µ index is free while the ⌫ index is bound. The fact that we can arbitrarily choose the
value of the µ index means that this compact tensor equation stands for four component equations:
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Secondly, in an equation in which there is an explicit sum, for example
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:
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The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:
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3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ
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confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.

Time for another exercise!
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In a moment, I am going to give you some rules that will help you avoid making mistakes. But first
of all, let me define some terms. A bound index in an equation is an index that we are summing over,
while a free index can take on any of its four possible values that we choose. For example in the equation
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⌫ , the µ index is free while the ⌫ index is bound. The fact that we can arbitrarily choose the
value of the µ index means that this compact tensor equation stands for four component equations:
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Secondly, in an equation in which there is an explicit sum, for example
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:

Bad: A
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The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:
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3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ
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0µ = ⇤

µ

⌫

A
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µ (1.43)

confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.
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The Rules
3.  Renaming bound indices:  You may rename a bound index  
     with a different index name as long as:

• The name does not collide with any free index name or any 
bound index name in the same term

• You rename both occurrences of that index name
 Bad:

In a moment, I am going to give you some rules that will help you avoid making mistakes. But first
of all, let me define some terms. A bound index in an equation is an index that we are summing over,
while a free index can take on any of its four possible values that we choose. For example in the equation
A
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A

⌫ , the µ index is free while the ⌫ index is bound. The fact that we can arbitrarily choose the
value of the µ index means that this compact tensor equation stands for four component equations:
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Secondly, in an equation in which there is an explicit sum, for example

d

d⌧

(⌘
µ⌫

p

µ

p

⌫) = ⌘

µ⌫

dp

µ

d⌧

p

⌫ + ⌘

µ⌫

p

µ

dp

⌫

d⌧

(1.40)

(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.

Now we are ready to state the rules.

1. Free indices. We cannot add tensor or equate tensor quantities that do not have the same number
of indices: it makes no sense to equate or add quantities that have di↵erent numbers of components.
Similarly, it makes no sense if the free indices are not in the same vertical positions, because then the
quantities will not transform alike. Therefore the free indices on the right side of an equation must be
have the same number and vertical positions as those on the left, and the same applies to any added
terms. Moreover, all free indices should have the same names as their counterparts in other terms or
on other sides of the equation. Examples of bad equations are:

Bad: A
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↵�

, A
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⌫

, A

µ

= B

µ (1.41)

The only exception: by convention, setting a tensor equal to zero is allowed. For example p

µ

tot

= 0
means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
choice of letter names is arbitrary) as long as you rename every occurrence of that index. For example:
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⌫
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3. Renaming bound indices. One can legally rename any bound in a term as long as you avoid making
the name the same as an index already appearing in the same term. This avoids ambiguities. For
example renaming the ⌫ index in the equation below to µ
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µ

µ

A

µ (1.43)

confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
allowed, but can be very useful. For example renaming the bound index ↵ to ⌫ in the last term in the
middle equality below
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.
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(which expresses the product rule of calculus in a case where we are evaluating the time derivative of the
squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.
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means that all the components of the total momentum of a system are zero. This is because any tensor
whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
involve implicit sums. It may even help to just insert the implied summation symbols.
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squared magnitude of a particle’s four-momentum), we call the two items in the right-most expression terms,
and the three quantities that are multiplied together in each of those two terms factors.
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whose components are all zero in some frame (no matter how many indices it has and no matter what
the positions of those indices are) will transform to all zeros in any other coordinate system. So there
is no point in attaching indices to such a zero-valued tensor.

2. Renaming free indices. One can legally rename any free index with a di↵erent Greek letter (the
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confuses what the sums really are. The first equation clearly has four implicit terms on the left, but
the second equation is ambiguous: is the µ index free or bound? Are we doing a sum or not?

On the other hand, renaming bound indices to agree with the same name in di↵erent terms is not only
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not only is legal but allows us to group common terms together and simplify the equation.

4. When in doubt, write it out. If you are ever uncertain about what is legal and what is not, write
out the implicit sums (if practical). You all have lots of practice with complicated equations that don’t
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4. When in doubt, write it out.



Exercise!
1.6.1 Exercise: Good or Bad?

Consider the equations listed below. Answer A = Violates Rule 1, B = Violates Rule 2, C = Violates Rule 3,
D = OK for each equation. For each acceptable equation, specify how many equations it implicitly represents
(A = 1, B = 4, C = 16, D = 64, E = 256).

(a) ⌘

µ⌫

u

µ

u

⌫ = �1

(b) p

↵ = mu

↵

�

µ

�

(c) ⇤

↵

�

A

� = A

0↵ renamed to ⇤

↵

�

A

� = A

0µ

(d) ⌘

µ⌫

(⇤�1)⌫
↵

= ⌘

µ�

⇤

�

↵

(e) ⌘

µ⌫

A

µ

B

⌫ = 0 renamed to ⌘

µµ

A

µ

B

µ = 0

(f)
dp

↵

d⌧

= qF

µ⌫

u

↵

(g) T

µ⌫↵

+ T

↵µ⌫

+ T

⌫↵µ

= 0

(h) 0 = ⌘

µ⌫

A

µ

B

⌫ + ⌘

↵�

A

↵

C

� renamed to 0 = ⌘

µ⌫

A

µ

B

⌫ + ⌘

µ⌫

A

µ

C

⌫

1.7 Maxwell’s Equations

If we can write a law of physics as a tensor equation, it will have exactly the same form in all inertial reference
frames. Such a manifestly covariant equation automatically satisfies the principle of relativity. The tensor
formalism therefore provides a powerful tool for finding relativistic generalizations of pre-relativistic laws of
physics. In this section, I will illustrate the process by “deriving” Maxwell’s equations by seeking tensor
expressions of Gauss’s law and the definition of the electric field for a particle at rest. This process will not
only give you practice in applying and reading tensor equations, but also illustrate concepts and techniques
we will find useful later when we “derive” the Einstein equation.

This section assumes that you already know Maxwell’s equations and about the electromagnetic potentials
� and ~

A. I will also assume that you know that conservation of charge requires that @⇢/@t + ~r ⇧ ~

J = 0,
where ⇢ is the density of charge and ~

J = ⇢~v is the current density.
We will take as our starting points the Newtonian equation for the force on a particle with charge q at

rest:
d~p

dt

= �q

~r� (1.45)

where � is the electrostatic potential, and the Poisson equation

�r2

� =
⇢

"

0

(1.46)

which is Gauss’s law expressed in terms of the potential. We will assume that we know experimentally that
these laws are true in static situations.

The first step to finding a tensor generalization of these laws is to determine the transformation properties
of ⇢: is this a scalar, a component of a four-vector, a component of a second-rank tensor or what? Charge
itself must be a relativistic scalar : if the charge of a particle were not frame-independent, then the charges an
atom’s electrons (which orbit the nucleus at all kinds of di↵erent speeds) would not exactly cancel the charge
of the protons at rest in the atom’s nucleus, meaning that di↵erent atoms would have di↵erent nonzero net
charges, something we do not observe. So let’s assume that charge is a relativistic scalar.

What does this mean about the charge density? Consider a small box of volume V filled with a total
charge q that is at rest the unprimed inertial frame. Suppose we look at the box in the primed frame, where
the box is moving with x-velocity ��. In this frame, the box has the same total charge q (because charge
is a relativistic scalar), but it will be observed to have a smaller volume V

0 = V

p
1� �

2 because the box’s

length in the x direction is observed to be Lorentz-contracted by a factor of
p

1� �

2. Therefore, the charge
density in the primed frame is

⇢

0 =
q

V

0 =
q

V

p
1� �

2

= �⇢ (1.47)
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J = 0,
where ⇢ is the density of charge and ~

J = ⇢~v is the current density.
We will take as our starting points the Newtonian equation for the force on a particle with charge q at

rest:
d~p

dt

= �q

~r� (1.45)

where � is the electrostatic potential, and the Poisson equation

�r2

� =
⇢

"

0

(1.46)

which is Gauss’s law expressed in terms of the potential. We will assume that we know experimentally that
these laws are true in static situations.

The first step to finding a tensor generalization of these laws is to determine the transformation properties
of ⇢: is this a scalar, a component of a four-vector, a component of a second-rank tensor or what? Charge
itself must be a relativistic scalar : if the charge of a particle were not frame-independent, then the charges an
atom’s electrons (which orbit the nucleus at all kinds of di↵erent speeds) would not exactly cancel the charge
of the protons at rest in the atom’s nucleus, meaning that di↵erent atoms would have di↵erent nonzero net
charges, something we do not observe. So let’s assume that charge is a relativistic scalar.

What does this mean about the charge density? Consider a small box of volume V filled with a total
charge q that is at rest the unprimed inertial frame. Suppose we look at the box in the primed frame, where
the box is moving with x-velocity ��. In this frame, the box has the same total charge q (because charge
is a relativistic scalar), but it will be observed to have a smaller volume V

0 = V

p
1� �

2 because the box’s

length in the x direction is observed to be Lorentz-contracted by a factor of
p

1� �

2. Therefore, the charge
density in the primed frame is
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V

p
1� �

2

= �⇢ (1.47)
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Equations for a electrostatic field:

We seek tensor generalizations that reduce to these 
equations in the static limit.

What kind of quantity is the charge density?

1.6.1 Exercise: Good or Bad?

Consider the equations listed below. Answer A = Violates Rule 1, B = Violates Rule 2, C = Violates Rule 3,
D = OK for each equation. For each acceptable equation, specify how many equations it implicitly represents
(A = 1, B = 4, C = 16, D = 64, E = 256).
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u

µ
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�

µ

�
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↵

�

A

� = A

0µ

(d) ⌘

µ⌫

(⇤�1)⌫
↵

= ⌘
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A

µ
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1.7 Maxwell’s Equations

If we can write a law of physics as a tensor equation, it will have exactly the same form in all inertial reference
frames. Such a manifestly covariant equation automatically satisfies the principle of relativity. The tensor
formalism therefore provides a powerful tool for finding relativistic generalizations of pre-relativistic laws of
physics. In this section, I will illustrate the process by “deriving” Maxwell’s equations by seeking tensor
expressions of Gauss’s law and the definition of the electric field for a particle at rest. This process will not
only give you practice in applying and reading tensor equations, but also illustrate concepts and techniques
we will find useful later when we “derive” the Einstein equation.

This section assumes that you already know Maxwell’s equations and about the electromagnetic potentials
� and ~

A. I will also assume that you know that conservation of charge requires that @⇢/@t + ~r ⇧ ~

J = 0,
where ⇢ is the density of charge and ~

J = ⇢~v is the current density.
We will take as our starting points the Newtonian equation for the force on a particle with charge q at

rest:
d~p

dt

= �q

~r� (1.45)

where � is the electrostatic potential, and the Poisson equation
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which is Gauss’s law expressed in terms of the potential. We will assume that we know experimentally that
these laws are true in static situations.

The first step to finding a tensor generalization of these laws is to determine the transformation properties
of ⇢: is this a scalar, a component of a four-vector, a component of a second-rank tensor or what? Charge
itself must be a relativistic scalar : if the charge of a particle were not frame-independent, then the charges an
atom’s electrons (which orbit the nucleus at all kinds of di↵erent speeds) would not exactly cancel the charge
of the protons at rest in the atom’s nucleus, meaning that di↵erent atoms would have di↵erent nonzero net
charges, something we do not observe. So let’s assume that charge is a relativistic scalar.

What does this mean about the charge density? Consider a small box of volume V filled with a total
charge q that is at rest the unprimed inertial frame. Suppose we look at the box in the primed frame, where
the box is moving with x-velocity ��. In this frame, the box has the same total charge q (because charge
is a relativistic scalar), but it will be observed to have a smaller volume V

0 = V

p
1� �

2 because the box’s

length in the x direction is observed to be Lorentz-contracted by a factor of
p

1� �

2. Therefore, the charge
density in the primed frame is
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Maxwell’s equations:
the current density four-vector

Define the four-current density J:
Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J

x = ⇢v

x

, J

y = ⇢v

y

, J

z = ⇢v

z

. According to the Lorentz transformation equations, if we have
J

t = ⇢, J

x = J

y = J

z = 0, then in the primed frame we should have

⇢

0 = J

0 t = �J

t � ��J

x = �⇢� 0 = �⇢

J

0 x = ���J

t + �J

x = ���⇢+ 0 = �⇢

0
�

J

0 y = J

y = 0

J

0 z = J

z = 0

(1.48)

consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@

µ

@

µ ⌘ �⌘

µ⌫

@

µ

@

⌫

=
+@

2

/@t

2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ

@

µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is

�@

µ

@

µ

A

↵ =
1

"

0

J

↵ (1.49)

However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation

�@

µ

(@µ

A

↵ + b @

↵

A

µ) =
1

"

0

J

↵ (1.50)

where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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(@µ
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0

J

t ) �@

µ

(@µ

�+ b · 0) = 1

"

0

⇢ ) �r2

� =
1

"

0

⇢ (1.51)

consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like

dp

↵

d⌧

= �q @

↵

A

µ (1.52)

But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u

µ

= ⌘

µ⌫

u

⌫ , because for a particle at
rest, ut = 1, ux = u

y = u

z = 0 ) u

t

= ⌘

t⌫

u

⌫ = ⌘

tt

u

t + 0 = �1, u
x

= ⌘

x⌫

u

⌫ = ⌘

xx

u

x = 0, and similarly
u

y

= u

z

= 0. So a more credible generalization of the equation above would be

dp

↵

d⌧

= +q @

↵

A

µ

u

µ

(1.53)

However, this is again not the most general form, because

dp

↵

d⌧

= q(@↵

A

µ + h @

µ

A

↵)u
µ

(1.54)

(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have

0 =
d

d⌧

(�m

2) =
d

d⌧

(p↵⌘
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p

�) =
dp

↵

d⌧

⌘
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p
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↵
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=
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↵

d⌧

⌘

↵�

p

� + p

�

⌘

�↵

dp

↵

d⌧

= 2
dp

↵

d⌧

⌘

↵�

p

� (1.55)
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Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J

x = ⇢v

x

, J

y = ⇢v

y

, J

z = ⇢v

z

. According to the Lorentz transformation equations, if we have
J

t = ⇢, J

x = J

y = J

z = 0, then in the primed frame we should have

⇢

0 = J

0 t = �J

t � ��J

x = �⇢� 0 = �⇢

J

0 x = ���J

t + �J

x = ���⇢+ 0 = �⇢

0
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0 y = J

y = 0

J

0 z = J

z = 0

(1.48)

consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@

µ
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µ ⌘ �⌘

µ⌫
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µ
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⌫

=
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2

/@t

2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ

@

µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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µ
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µ

A

↵ =
1

"

0

J

↵ (1.49)

However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation

�@

µ

(@µ

A

↵ + b @

↵

A

µ) =
1

"

0

J

↵ (1.50)

where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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(@µ

A

t + b @
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0
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µ

(@µ

�+ b · 0) = 1
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� =
1
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like

dp

↵

d⌧

= �q @

↵

A

µ (1.52)

But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u

µ

= ⌘

µ⌫

u

⌫ , because for a particle at
rest, ut = 1, ux = u

y = u

z = 0 ) u

t

= ⌘

t⌫

u

⌫ = ⌘

tt
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t + 0 = �1, u
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= ⌘

x⌫
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⌫ = ⌘
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u

x = 0, and similarly
u

y

= u

z

= 0. So a more credible generalization of the equation above would be

dp
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µ
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(1.53)

However, this is again not the most general form, because

dp

↵

d⌧

= q(@↵

A

µ + h @

µ

A

↵)u
µ

(1.54)

(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have

0 =
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(�m
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So this quantity transforms like a four-vector
(Charge density is the time component of this four-vector)



Maxwell’s Equations:
Generalizing the Poisson equation

Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J

x = ⇢v

x

, J

y = ⇢v

y

, J

z = ⇢v

z

. According to the Lorentz transformation equations, if we have
J

t = ⇢, J

x = J

y = J

z = 0, then in the primed frame we should have

⇢

0 = J

0 t = �J

t � ��J

x = �⇢� 0 = �⇢
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0 x = ���J

t + �J

x = ���⇢+ 0 = �⇢

0
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J

0 y = J

y = 0

J

0 z = J

z = 0

(1.48)

consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@

µ
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⌫

=
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/@t

2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ

@

µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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↵ =
1

"

0

J

↵ (1.49)

However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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↵ (1.50)

where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like

dp
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d⌧

= �q @

↵

A

µ (1.52)

But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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= 0. So a more credible generalization of the equation above would be
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However, this is again not the most general form, because
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(1.54)

(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
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Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J
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. According to the Lorentz transformation equations, if we have
J
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z = 0, then in the primed frame we should have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ

@

µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes

�@

µ

(@µ

A

t + b @

t

A

µ) =
1

"

0

J

t ) �@

µ

(@µ

�+ b · 0) = 1

"

0

⇢ ) �r2

� =
1

"

0

⇢ (1.51)

consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have

0 =
d

d⌧

(�m

2) =
d

d⌧

(p↵⌘
↵�

p

�) =
dp

↵

d⌧

⌘

↵�

p

� + p

↵

⌘

↵�

dp

�

d⌧

=
dp

↵

d⌧

⌘

↵�

p

� + p

�

⌘

�↵

dp

↵

d⌧

= 2
dp

↵

d⌧

⌘

↵�

p

� (1.55)

15
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.
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vector J. What about the left side? A plausible four-vector generalization of �r2 is �@

µ

@

µ ⌘ �⌘

µ⌫

@

µ

@

⌫

=
+@

2

/@t

2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
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where b is any frame-independent constant, is also possible, because the time component of the above in a
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation

�@

µ

(@µ

A

↵ + b @

↵

A

µ) =
1

"

0

J

↵ (1.50)
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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Maxwell’s Equations:
Generalizing the force equation
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J
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y = ⇢v

y

, J

z = ⇢v

z

. According to the Lorentz transformation equations, if we have
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t = ⇢, J

x = J

y = J

z = 0, then in the primed frame we should have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation

�@

µ

(@µ

A

↵ + b @

↵

A

µ) =
1

"

0

J

↵ (1.50)

where b is any frame-independent constant, is also possible, because the time component of the above in a
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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First try:

Note that for a particle at rest:

So a better guess is:

Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
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Now, suppose we define a four-current J so that its components in any inertial reference frame are
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢
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Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J
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. According to the Lorentz transformation equations, if we have
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z = 0, then in the primed frame we should have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ

@

µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes

�@

µ

(@µ

A

t + b @

t

A

µ) =
1

"

0

J

t ) �@

µ

(@µ

�+ b · 0) = 1

"

0

⇢ ) �r2

� =
1

"

0

⇢ (1.51)

consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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More general is:



Maxwell’s Equations:
Constraining h
Note that:

Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
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Now, suppose we define a four-current J so that its components in any inertial reference frame are
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is

�@

µ

@

µ

A

↵ =
1

"

0

J

↵ (1.49)

However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢
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�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
J

t ⌘ ⇢, J
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. According to the Lorentz transformation equations, if we have
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z = 0, then in the primed frame we should have
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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2 � r2: for a static potential field, the added time-derivative will be zero, so the two expressions
are equivalent. But �@

µ
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
static situation becomes
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
The natural choice is the covector version of the particle’s four-velocity u
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘
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= ⌘

�↵

. If we note that
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� = p
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, and substitute in equation 1.54, we see that
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Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u

↵

u

µ

is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding
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We can similarly constrain b in equation 1.50. Suppose I multiply both sides by @
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and sum over ↵:
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @

↵

J

↵ = @⇢/@t + @J

x

/@x + @J

y

/@y + @J

z

/@z = 0 by charge conservation.
Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.

So our final proposed tensor equations for electrodynamics are
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where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
in parentheses is a second-rank antisymmetric tensor that appears in both equations. We can give its six
independent components (arranged as a square matrix below) letter names E
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consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
field equations become
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We can easily see that the first of these equations is the Lorentz force law: for example, its x component is
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Moreover, in the primed frame, the charge is moving with a velocity ~v

0 = �~

� in the -x direction, so it has a
nonzero current density whose x component should be �⇢

0
�.

Now, suppose we define a four-current J so that its components in any inertial reference frame are
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consistent with our earlier results. So we see that the charge density ⇢ transforms as the time component of
a four-vector.

But this means that the right side of the relativistic generalization of equation 1.46 must be the four-
vector J. What about the left side? A plausible four-vector generalization of �r2 is �@
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are equivalent. But �@
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µ transforms as a relativistic scalar, so if the left side is to transform as the time
component of a four-vector, then � must be the time component of a four-vector. Let’s call the components
of that four-vector A↵. Therefore, the natural relativistic generalization of the Poisson equation is
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However, this is not the most general equation, because in a static situation any time-derivatives of the
four-potential will be zero. Therefore the more general equation
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where b is any frame-independent constant, is also possible, because the time component of the above in a
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consistent with equation 1.46. So we will take equation 1.50 to be its relativistic generalization.
Now let’s look at the force equation. Since we know that the electrostatic potential is the time component

of a four-vector, the generalization of the force equation must look something like
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But this can’t be right, because the free indexes don’t match. We need an additional covector on the right
to contract with the A

µ in such a way that for a particle at rest, only the time component At = � survives.
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However, this is again not the most general form, because
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(where h is another scalar constant) because for a particle at rest, the new term involves only a time-derivative
of A↵, which would be zero in a static situation.

However, in this case, we can constrain the value of h. The time-derivative of the squared magnitude of
the particle’s four-momentum, which is its rest-energy m must be zero no matter what is happening with
the electromagnetic potentials. Therefore we must have
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So if we multiply both sides of

by ηαβ pβ = pα = muα we get

so h = –1.



Maxwell’s Equations:
Constraining b
Similarly,

where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘
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Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u
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u
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is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding
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We can similarly constrain b in equation 1.50. Suppose I multiply both sides by @
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @
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x
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/@z = 0 by charge conservation.
Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.

So our final proposed tensor equations for electrodynamics are
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where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
in parentheses is a second-rank antisymmetric tensor that appears in both equations. We can give its six
independent components (arranged as a square matrix below) letter names E
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consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
field equations become
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We can easily see that the first of these equations is the Lorentz force law: for example, its x component is
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But charge conservation requires that

so b = –1.

where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘
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. If we note that
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Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u

↵

u
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is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @
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Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.

So our final proposed tensor equations for electrodynamics are
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where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
in parentheses is a second-rank antisymmetric tensor that appears in both equations. We can give its six
independent components (arranged as a square matrix below) letter names E

x

, E

y

, E

z

, B

x

, B

y

, B

z

as follows:

F

µ⌫ =

2

664

⌫=t x y z

µ=t @

t

A

t � @

t

A

t

@

t

A

x � @

x

A

t

@

t

A

y � @

y

A

t

@

t

A

z � @

z

A

t

x @

x

A

t � @

t

A

x

@

x

A

x � @

x

A

x

@

x

A

y � @

y

A

x

@

x

A

z � @

z

A

x

y @

y

A

t � @

t

A

y

@

y

A

x � @

x

A

y

@

y

A

y � @

y

A

y

@

y

A

z � @

z

A

y

z @

z

A

t � @

t

A

z

@

z

A

x � @

x

A

z

@

z

A

y � @

y

A

z

@

z

A

z � @

z

A

z

3

775

⌘

2

664

⌫=t x y z

µ=t 0 E

x

E

y

E

z

x �E

x

0 B

z

�B

y

y �E

y

�B

z

0 B

x

z �E

z

B

z

�B

x

0

3

775

(1.61)

Note that @

↵ ⌘ ⌘

↵�

@

�

implies that @

t = ⌘

t�

@

� = ⌘

tt

@

t

= �@

t

, @

x = ⌘

x�

@

� = ⌘

xx

@

t

= +@

x

, and similarly
that @y = @

y

and @

z = @

z

(because ⌘

µ⌫ has the same components as ⌘
µ⌫

). This means that the definitions
stated above imply that

~

E = �~r�� @

~

A

@t

,

~

B = ~r⇥ ~

A (1.62)

consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u

↵

u

µ

is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding

dp

↵

d⌧

= q(@↵

A

µ � @

µ

A

↵)u
µ

(1.58)

We can similarly constrain b in equation 1.50. Suppose I multiply both sides by @

↵

and sum over ↵:

1

"

0

@

↵

J

↵ = �@

↵

@

µ

(@µ

A

↵ + b @

↵

A

µ) = �@

↵

@

µ

@

µ

A

↵ � b @

µ

@

↵

@

µ

A

↵ = �(1 + b)@
↵

@

µ

@

µ

A

↵ (1.59)

where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
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Maxwell’s Equations:
Final equations for the potential
So we have
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Fμν = ∂μAν − ∂νAμ
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Maxwell’s Equations:
Final equations for the fields
So we have

The first is the Lorentz force law:

where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘

↵�

= ⌘

�↵

. If we note that
⌘

↵�

p

� = p

↵

= mu

↵

, and substitute in equation 1.54, we see that

0 = 2qm(@↵

A

µ + h @

µ

A

↵)u
↵

u

µ

(1.56)

Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1

(@↵

A

µ � @

µ

A

↵)u
↵

u

µ

= @

↵

A

µ

u

↵

u

µ

� @

µ

A

↵

u

↵

u

µ

= @

↵

A

µ

u

↵

u

µ

� @

↵

A

µ

u

µ

u

↵

= 0 (1.57)

where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u

↵

u

µ

is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding

dp

↵

d⌧

= q(@↵

A

µ � @

µ

A

↵)u
µ

(1.58)

We can similarly constrain b in equation 1.50. Suppose I multiply both sides by @

↵

and sum over ↵:

1

"

0

@

↵

J

↵ = �@

↵

@

µ

(@µ

A

↵ + b @

↵

A

µ) = �@

↵

@

µ

@

µ

A

↵ � b @

µ

@

↵

@

µ

A

↵ = �(1 + b)@
↵

@

µ

@

µ

A

↵ (1.59)

where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @

↵

J

↵ = @⇢/@t + @J

x

/@x + @J

y

/@y + @J

z

/@z = 0 by charge conservation.
Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.

So our final proposed tensor equations for electrodynamics are

dp

↵

d⌧

= q(@↵

A

µ � @

µ

A

↵)u
µ

and @

µ

(@↵

A

µ � @

µ

A

↵) =
1

"

0

J

↵ (1.60)

where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
in parentheses is a second-rank antisymmetric tensor that appears in both equations. We can give its six
independent components (arranged as a square matrix below) letter names E

x

, E

y

, E

z

, B

x

, B

y

, B

z

as follows:

F

µ⌫ =

2

664

⌫=t x y z

µ=t @

t

A

t � @

t

A

t

@

t

A

x � @

x

A

t

@

t

A

y � @

y

A

t

@

t

A

z � @

z

A

t

x @

x

A

t � @

t

A

x

@

x

A

x � @

x

A

x

@

x

A

y � @

y

A

x

@

x

A

z � @

z

A

x

y @

y

A

t � @

t

A

y

@

y

A

x � @

x

A

y

@

y

A

y � @

y

A

y

@

y

A

z � @

z

A

y

z @

z

A

t � @

t

A

z

@

z

A

x � @

x

A

z

@

z

A

y � @

y

A

z

@

z

A

z � @

z

A

z

3

775

⌘

2

664

⌫=t x y z

µ=t 0 E

x

E

y

E

z

x �E

x

0 B

z

�B

y

y �E

y

�B

z

0 B

x

z �E

z

B

z

�B

x

0

3

775

(1.61)

Note that @

↵ ⌘ ⌘

↵�

@

�

implies that @

t = ⌘

t�

@

� = ⌘

tt

@

t

= �@

t

, @

x = ⌘

x�

@

� = ⌘

xx

@

t

= +@

x

, and similarly
that @y = @

y

and @

z = @

z

(because ⌘

µ⌫ has the same components as ⌘
µ⌫

). This means that the definitions
stated above imply that

~

E = �~r�� @

~

A

@t

,

~

B = ~r⇥ ~

A (1.62)

consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
field equations become

dp

↵

d⌧

= qF

↵µ

u

µ

and @

µ

F

↵µ =
1

"

0

J

↵ (1.63)

We can easily see that the first of these equations is the Lorentz force law: for example, its x component is

dp

x

d⌧

= q(F xt

u

t

+ F

xx

u

x

= F

xy

u

y

+ F

xz

u

z

) = q

1p
1� v

2

(�E

x

(�1) + 0 +B

z

v

y

�B

y

v

z

)

) dp

x

dt

= q(�E

x

(�1) + 0 +B

z

v

y

�B

y

v

z

) = qE

x

+ q(~v ⇥ ~

B)
x

(1.64)

16

where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘

↵�

= ⌘

�↵

. If we note that
⌘

↵�

p

� = p

↵

= mu

↵

, and substitute in equation 1.54, we see that

0 = 2qm(@↵

A

µ + h @

µ

A

↵)u
↵

u

µ

(1.56)

Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1

(@↵

A

µ � @

µ

A

↵)u
↵

u

µ

= @

↵

A

µ

u

↵

u

µ

� @

µ

A

↵

u

↵

u

µ

= @

↵

A

µ

u

↵

u

µ

� @

↵

A

µ

u

µ

u

↵

= 0 (1.57)

where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @
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Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.
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where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
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consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
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where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
second term I used the fact that the metric tensor is symmetric, so that ⌘
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Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u

↵

u

µ

is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @
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Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
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Maxwell’s Equations:
Final equations for the fields
So we have

The time component of the second is Gauss’s Law:
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
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You can check that the other components of @
µ

F

↵µ = J
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/"

0

are the three components of the Ampere-
Maxwell law.

What of the other Maxwell equations? It turns out that the definition of the field tensor in terms of
potentials implies the identity

@

↵

F

µ⌫ + @

⌫

F

↵µ + @

µ

F

⌫↵ = 0 (1.66)

Most of the 64 component equations implied by this tensor relation are trivially zero, but the components
equations that are not yield Gauss’s law for the magnetic field and components of Faraday’s law.

The point is that we have “derived” Maxwell’s equations simply by finding generalizations of the New-
tonian equation for electrostatic that are (1) covariant tensor equations (expressing consistency with the
principle of relativity) (2) consistent with the idea that charge is a relativistic scalar, (3) consistent with
charge conservation and (4) consistent with the requirement that electromagnetic fields don’t mess with a
charged particle’s mass. I say “derived” in quotes, because we have not shown that our solution is unique,
only that it works. Still, this is an amazing illustration of both the idea that Maxwell’s equations are relativis-
tically necessary consequences of electrostatics and more generally the power of covariant tensor equations
to expose consequences of the principle of relativity.

1.7.1 Exercise: Gauss’s law for the Magnetic Field.

Find one choice of values for the indices ↵, µ, and ⌫ in equation 1.66 that yields Gauss’s law for the magnetic
field. Are there other choices that yield the same? How many copies of this equation do you think we have
in equation 1.66?

Homework Problems

1.1 The USS Enterprise fires a photon torpedo at Romulan spacecraft that is approaching in the -x-
direction at a speed v = 3/5. If the photon torpedo’s total rest mass-energy is zero (a property of
all good photons), and it has energy E in the Enterprise’s frame, what is its energy in the Romulans’
frame? (Hint: Use the fact that the squared magnitude of the torpedo’s four-momentum is zero to
find the x component of its four-momentum.)

1.2 Suppose that the function x(⌧) = 1

g

[ cosh(g⌧) ] where g is a constant with units of m�1, describes the
worldline of an object moving along the x axis of a certain inertial frame by specifying its x-position as a
function of the object’s proper time ⌧ . (This function happens to describe an object whose acceleration
has the constant value g in its own instantaneous rest frame.)

(a) Calculate u

x as a function of ⌧ for this object.

(b) Use the requirement that u ⇧
u = �1 to determine u

t as a function of ⌧ .

(c) What is the object’s speed v in our given reference frame? Is it ever greater than 1?

(d) Show that gt = sinh(g⌧), where t is the coordinate time measured in our given frame.

(e) Use the result of the previous part to find expressions for ux

, u

t

, and v in terms of gt.

1.3 Prove that the Kronecker delta �

µ

⌫

, which is defined in all inertial frames to be 1 if µ = ⌫ and zero
otherwise, correctly obeys the tensor transformation law for a tensor with one upper and one lower
index.

1.4 Consider a second-rank tensor T that is symmetric in some inertial reference frame: T

µ⌫

= T

⌫µ

.
Prove that it is symmetric in all inertial reference frames. Show that the property of antisymmetry
F

µ⌫ = �F

⌫µ is similarly frame-independent.

1.5 Prove that equation 1.66 follows from the definition of the field tensor components.

1.6 Find a combination of values for the indices ↵, µ, and ⌫ that yield a component of Faraday’s law.
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The other components are the Ampere-Maxwell law.  
The definitions of the field in terms of the potentials imply:
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g

[ cosh(g⌧) ] where g is a constant with units of m�1, describes the
worldline of an object moving along the x axis of a certain inertial frame by specifying its x-position as a
function of the object’s proper time ⌧ . (This function happens to describe an object whose acceleration
has the constant value g in its own instantaneous rest frame.)

(a) Calculate u

x as a function of ⌧ for this object.

(b) Use the requirement that u ⇧
u = �1 to determine u

t as a function of ⌧ .

(c) What is the object’s speed v in our given reference frame? Is it ever greater than 1?

(d) Show that gt = sinh(g⌧), where t is the coordinate time measured in our given frame.

(e) Use the result of the previous part to find expressions for ux

, u

t

, and v in terms of gt.

1.3 Prove that the Kronecker delta �

µ

⌫

, which is defined in all inertial frames to be 1 if µ = ⌫ and zero
otherwise, correctly obeys the tensor transformation law for a tensor with one upper and one lower
index.

1.4 Consider a second-rank tensor T that is symmetric in some inertial reference frame: T

µ⌫

= T

⌫µ

.
Prove that it is symmetric in all inertial reference frames. Show that the property of antisymmetry
F

µ⌫ = �F

⌫µ is similarly frame-independent.

1.5 Prove that equation 1.66 follows from the definition of the field tensor components.

1.6 Find a combination of values for the indices ↵, µ, and ⌫ that yield a component of Faraday’s law.
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which yield the other two Maxwell equations.



Maxwell’s Equations:
Summary:
We have “derived” Maxwell’s Equations by finding tensor 
generalizations of Newtonian equations for static fields that are:

1. automatically consistent with the POR
2. consistent with the idea that charge is a relativistic scalar
3. consistent with charge conservation
4. consistent with the idea that EM fields don’t affect a particle’s mass
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where in the next-to-last step, I renamed the bound index ↵ to beta and the bound index � to ↵ in the
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Now, at first this looks impossible, because the particle’s four-velocity could be anything and the field
derivatives could be anything, so how could we be sure that this is zero? But note that if we choose h = �1
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where in the next-to-last step, I renamed the bound indices µ $ ↵ in the second term, and in the last step
I recognized that the order in which we multiply u
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µ

is irrelevant. So we see that we can ensure that the
fields have no e↵ect on a particle’s rest mass by choosing h = �1 in equation 1.54, yielding
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We can similarly constrain b in equation 1.50. Suppose I multiply both sides by @
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where in the next-to-last step I have renamed the bound indices µ $ ↵ in the second term, and in the last
step I noted that the order in which we take the partial derivatives does not matter. But the left side of
the equation is proportional to @
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/@z = 0 by charge conservation.
Therefore, the only way to ensure that charge is conserved independent of what is going on with the fields
is to insist that b = �1.

So our final proposed tensor equations for electrodynamics are
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where I have flipped the terms in the second equation to get rid of the overall minus sign. Note that quantity
in parentheses is a second-rank antisymmetric tensor that appears in both equations. We can give its six
independent components (arranged as a square matrix below) letter names E
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consistent with the traditional definitions of these fields. In terms of the field tensor F , our electromagnetic
field equations become
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We can easily see that the first of these equations is the Lorentz force law: for example, its x component is
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Most of the 64 component equations implied by this tensor relation are trivially zero, but the components
equations that are not yield Gauss’s law for the magnetic field and components of Faraday’s law.

The point is that we have “derived” Maxwell’s equations simply by finding generalizations of the New-
tonian equation for electrostatic that are (1) covariant tensor equations (expressing consistency with the
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charge conservation and (4) consistent with the requirement that electromagnetic fields don’t mess with a
charged particle’s mass. I say “derived” in quotes, because we have not shown that our solution is unique,
only that it works. Still, this is an amazing illustration of both the idea that Maxwell’s equations are relativis-
tically necessary consequences of electrostatics and more generally the power of covariant tensor equations
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