
General Relativity and Gravitational Waves

Session 2: General Coordinates

2.1 Overview of this Session

As we saw in the last session, general relativity tells us that gravity results from curved spacetime. We have
also seen how to describe the flat spacetime of special relativity using cartesian spatial coordinates and a
time coordinate defined by synchronized clocks in an inertial frame. But in curved spacetimes, we cannot
use cartesian coordinates. Moreover, since our eventual goal is to calculate how matter curves the spacetime
around it, we often do not know the spacetime’s geometry a priori, and therefore do not know what kind of
coordinate system we can use at all!

Our goal in this session is to develop mathematical techniques for writing physical equations in a way
that is completely independent of the coordinate system we actually end up using. This will generalize the
principle of relativity in such a way that we can write equations that apply even when we have no idea what
the underlying geometry of spacetime is.

An overview of the sections in this session follows:

2.2 Definition of a Coordinate Basis. This section will describe a particular way to define bases for a
coordinate system that make it easy to generalize last session’s tensor mathematics.

2.3 Tensors in a Coordinate Basis. In this section, we will see how to generalize the mathematics of
tensors to handle arbitrary coordinate bases. We will discover, however, that the simple gradient ∂µ
of a tensor no longer transforms like a covector.

2.4 The Tensor Gradient. In this section, we will see how to generate a tensor gradient that reduces to
the ordinary gradient in cartesian coordinates but but generally transforms like a tensor.

2.5 The Geodesic Equation. The tensor gradient will allow us to define the geodesic as the “straightest
possible worldline.” We will check this definition in a case where we know what the geodesics are.

2.6 Schwarzschild Geodesics. The Schwarzschild metric is a solution to the Einstein equation in the
empty space surrounding a spherical star. This section will present the metric without proof and use
the geodesic equation to derive equations of motion in such a spacetime.

2.7 Locally Orthonormal and Locally Inertial Frames. At any location in spacetime, we can define
locally orthonormal and locally inertial reference frames that represent the kind of laboratories that
we might set up in a given spacetime. This section will discuss how we can set up such coordinate
systems and how to calculate quantities that would be measured in such a system.

2.2 Definition of a Coordinate Basis.

A coordinate system is simply an organized scheme for attaching numbers (coordinates) to points in space
and/or events in spacetime. The normal approach we have used in special relativity (involving using an
orthonormal coordinate lattice and synchronizing clocks using light-flashes) is one way, but by no means the
only way, to attach coordinates to events, and this method does not yield self-consistent results in general
spacetimes. The only assumptions that we will make here about our coordinate systems are that (1) our
spacetime is not so pathologically curved that we cannot treat a sufficiently small patch of it as if it were not
curved, and (2) our coordinates vary smoothly so that neighboring points have nearly the same coordinates.

To make things simpler, I will use an example of strange coordinates applied to a flat two-dimensional
(2D) space. The methods we develop for handling arbitrary coordinates in such a context will end up working
just as well for curved spaces in any number of dimensions. I am also not going to emphasize rigor in what
follows, but on developing your intuition, which I hope you will find more valuable.

Now, the differential distance ds between two infinitesimally separated points in a two-dimensional space
(or the spacetime separation between events in a spacetime) is a coordinate-independent quantity, because
we can measure it directly with a ruler (or maybe a clock in spacetime) without having to define a coordinate
system at all. The way that we connect arbitrary coordinates to physical reality is by linking the spacetime
separation between two infinitesimally-separated points (or events) to their coordinate separations.
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Figure 1: This drawing shows an arbitrary coordinate system in a possibly curved space, a point P, the basis
vectors eu, ew at that point, and a close-up view of how we define the basis vectors so that an infinitesimal
displacement ds is the vector sum of the basis vectors times simply du and dw respectively.

So consider a two-dimensional flat space. In such a space, a cartesian xy coordinate system is one
in which the distance ds between two infinitesimally separated points is everywhere ds2 = dx2 + dy2. A
curvilinear coordinate system is one where this pythagorean relationship is not true. How can we connect
the coordinate-independent distance between two points with their coordinate separations in such a case?

Consider arbitrary coordinates u,w for a 2D space. When using index notation, we will interpret dxu and
dxw as being equivalent to du and dw, respectively, and we will assume that Greek indices have two possible
values u and w. I will also represent abstract vectors in this 2D space with the same bold-face notation as
we used for four-vectors last time. This will keep the notation fixed when we generalize to 4D spacetimes.

Now, no matter how our u, w coordinate system is defined, at each point P in the space, we can define
a pair of basis vectors eu, ew such that

1. eu points tangent to the w = constant curve toward increasing values of u.

2. ew points tangent to the u = constant curve toward increasing values of w.

3. We define their lengths so that the displacement vector ds between a point P at coordinates u,w and
an infinitesimally separated neighboring point Q at coordinates u+ du,w + dw can be written

ds = du eu + dw ew = dxµeµ (See figure 1.) (2.1)

(Note: the lower index on eµ tells us which basis vector, not which component, we are talking about.)

Now, this only works for differential separations, because the directions of the basis vectors change as
we move significant distances. Moreover, vector addition as I have illustrated it in Figure 1 is really only
defined in a flat space. In a curved space, the separation between P and Q must be so small that we can
treat the space as flat, just as we treat a city map as flat on the curved surface of the earth. (Technically,
we are doing this vector addition in a flat space that is tangent to the curved space at point P.)

Now, if we define basis vectors this way, then du and dw become the components of ds in that basis and
we call the set of basis vectors eu, ew a coordinate basis. A coordinate basis is generally different than
the cartesian coordinate basis vectors ex, ey in that (1) eu and ew may not be perpendicular, (2) eu and ew
may not have unit length, and (3) eu and/or ew may change in magnitude and/or direction as we move from
point to point. Now, a coordinate basis is not the only way to define a set of basis vectors or a coordinate
system. For example, standard polar coordinates in two-dimensional flat space and spherical coordinates in
a three-dimensional flat space do not use a coordinate basis, because the basis vectors in those coordinate
systems always have unit magnitude. Using a coordinate basis makes components of the displacement vector
ds simpler (at the expense of complexity in the basis vectors), something that turns out to be very valuable.

Once we have defined a coordinate basis for coordinates u and w, then we define the components of a
four-vector A at any point P to be Au, Aw such that

A = Aueu +Awew = Aµeµ (2.2)
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This ensures that the components of ds and A transform alike when we change basis systems.
Now, ds � ds is the square of the physical distance between the endpoints of the displacement ds:

ds2 = ds � ds = (du eu + dw ew) � (du eu + dw ew)

= du2eu � eu + du dw eu � ew + dw du ew � eu + dw2 ew � ew
= dxµdxν eµ � eν ≡ gµνdxµdxν (2.3)

The set of four components gµν = eµ � eν represents the metric tensor of our two-dimensional coordinate
basis. Note that because both the magnitudes and directions of the basis vectors depend on position, the
value of gµν also generally depends on position. But since the dot-product of vectors is commutative, this
definition implies that the metric is always symmetric: gαβ = gβα.

We can easily generalize this to four dimensional spacetime. In spacetime, gµν = eµ � eν (where the
indices now range over four values) represents the generalization of the metric tensor ηµν introduced in the
last session. In flat spacetime, we can always find a cartesian coordinate basis where the basis vectors are
everywhere orthogonal (eµ � eν = 0 for µ 6= ν), and have unit magnitude (eµ � eν = ±1 when µ = ν,
with −1 indicating a time coordinate) at all events and still have the components of the differential four-
displacement ds be simply dt, dx, dy, and dz, but this is not generally possible in curved spacetime. The
quantity ds2 = gµνdx

µdxν generalizes this idea for an arbitrary coordinate basis in an arbitrary spacetime.
The quantity ds represents the spacetime separation if the events at ends of the differential displacement
have a spacelike separation, and dτ =

√
−ds2 is the infinitesimal spacetime interval (which is the same as

the proper time in the infinitesimal limit) between the events if they have a timelike separation. The point
is that the metric connects the arbitrary coordinates with the physical distances or intervals in the physical
universe behind that coordinate system. The symmetric metric tensor in spacetime has 10 independent
components (the 4 diagonal components and half of the 12 off-diagonal components).

2.2.1 Exercise: The Metric for Spherical Coordinates

Consider θ-φ coordinates on the surface of a sphere of radius R, where curves of constant θ and φ are lines of
latitude and longitude, respectively (but assume that θ = 0 at the north pole, as is normal in physics, rather
than at the equator). Note that these curves are perpendicular everywhere but the poles. By considering
what the formula for ds2 between infinitesimally-separated points must be in terms of dθ and dφ, find
the metric components gθθ, gθφ, gφθ, and gφφ as a function of position for a coordinate basis based on the
coordinates θ and φ. Also, what are the lengths of the eθ and eφ basis vectors as a function of position?

2.3 Tensors in a Coordinate Basis

Again, for the moment, let’s go back to considering a two-dimensional, possibly curved surface in space.
Consider a general transformation between our original coordinates u,w to new coordinates p(u,w) and
q(u,w). The chain rule for partial derivatives implies that infinitesimal changes in the new coordinates are
related to changes in the old coordinates as follows:

dp =
∂p

∂u
du+

∂p

∂w
dw and dq =

∂q

∂u
du+

∂q

∂w
dw (2.4)

If we consider the p, q coordinates the primed coordinate system and u,w coordinates the unprimed system,
then we can write this rule compactly as

dx′ µ =
∂x′ µ

∂xν
dxν (2.5)

(with an implicit sum over the ν subscript: we consider a superscript in the denominator of a partial derivative
to equivalent to a subscript).

Now note that in a coordinate basis, the values of dp and dq are the actual components of the infinitesimal
displacement vector ds in the primed system and du and dw are the same in the unprimed system. Since
by definition, the components of an arbitrary vector A transform in the same ways as the components of the
displacement vector, The transformation law for the components of A is

A′ µ =
∂x′ µ

∂xν
Aν (2.6)

This is true only if we are using a coordinate basis, something that we will simply assume from now on.
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Note in that context that equation 2.6 looks just like the transformation law for the components of a
four-vector in spacetime with ∂x′ν/∂xµ replacing Λµν . Indeed, if you take partial derivatives of the Lorentz
transformation functions t′(t, x, y, z), x′(t, x, y, z), y′(t, x, y, z), and z′(t, x, y, z), you will see that in fact

∂x′ µ

∂xν
= Λµν (2.7)

for that particular coordinate transformation. We see, therefore, that expressing the transformation coeffi-
cients in terms of partial derivatives is consistent with but generalizes the transformation between cartesian
coordinates in inertial frames that we considered earlier.

Now, basic partial differential calculus implies that

∂x′ µ

∂xν
∂xν

∂x′ α
= δµα (2.8)

For example, if we write this out for our u,w → p, q transformations, this says that

∂p

∂u

∂u

∂p
+
∂p

∂w

∂w

∂p
=
dp

dp
= 1,

∂p

∂u

∂u

∂q
+
∂p

∂w

∂w

∂q
=
dp

dq
= 0,

∂q

∂u

∂u

∂p
+
∂q

∂w

∂w

∂p
=
dq

dp
= 0,

∂q

∂u

∂u

∂q
+
∂q

∂w

∂w

∂q
=
dq

dq
= 1 (2.9)

Equation 2.8 basically says that ∂x′ µ/∂xν and ∂xµ/∂x′ ν represent inverse transformations, analogous to
Λµν and (Λ−1)µν in flat spacetime.

Now we can easily state generalized transformation laws for arbitrary tensors: an nth-rank tensor’s com-
ponents transform: we define an nth-rank tensor Tα··· γ···

β··· to be an n-index object (with 2n components
in a 2D space and 4n components in spacetime) that transforms according to

T ′α··· γ···
β··· =

∂x′ α

∂xµ
· · · ∂x

ν

∂x′ β
· · · ∂x

′ γ

∂xσ
· · ·Tµ··· σ···

ν··· (2.10)

that is, a partial-derivative factor with the primed coordinate in the numerator for every upper (superscript)
index and one with the primed coordinate in the denominator for every lower (subscript) index.

In particular, we can prove that the metric correctly transforms as a tensor with two lower indices as
follows. The coordinate-independence of the spacetime separation implies that

g′µνdx
′µdx′ ν = gαβdx

αdxβ

= gαβ

(
∂xα

∂x′ γ
dx′α

)(
∂xβ

∂x′σ
dxσ

)
=

(
∂xα

∂x′ γ
∂xβ

∂x′σ
gαβ

)
dx′ γdx′σ

=

(
∂xα

∂x′µ
∂xβ

∂x′ ν
gαβ

)
dx′µdx′ ν

⇒ 0 =

(
∂xα

∂x′µ
∂xβ

∂x′ ν
gαβ − g′µν

)
dx′µdx′ ν (2.11)

Now, we can’t just divide both sides by dx′µdx′ ν because a sum can be zero even if the individual terms in
the sum are not. But this relation must be true for arbitrary differential displacements. So if I choose the
displacement to be entirely in the p direction (dw = 0), then the only nonzero term in the sum is the one
where µ = ν = p, so the quantity in parentheses must be 0 when µ = ν = p. In a similar way, I can choose
displacement components to show that all of the other components of that quantity must be zero as well:

0 =

(
∂xα

∂x′µ
∂xβ

∂x′ ν
gαβ − g′µν

)
⇒ g′µν =

∂x′ α

∂xµ
∂xν

∂x′ β
gαβ (2.12)

which is the correct transformation law for a tensor. Using similar methods, you can show that the Kronecker
delta is still a tensor, that gµν defined such that gµνgµα = δνα (the matrix inverse of the metric tensor), is
still a tensor, that multiplying by gµν and gµν and summing over µ still lowers or raises a tensor index, that
contracting over an upper and lower index of a tensor quantity still yields a tensor with rank n− 2, etc.
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Figure 2: Parabolic coordinates for a flat two-dimensional plane. Adapted from Moore, A General Relativity
Workbook, University Science Books, 2013, p. 60.)

The gradient of a scalar Φ also still yields a tensor (covector): by the chain rule

∂′µΦ ≡
∂Φ

∂x′ µ
=

∂xν

∂x′ µ
∂Φ

∂xν
=

∂xν

∂x′ µ
(∂νΦ) (2.13)

which is the correct transformation law for a tensor with one lower index. However (unlike in the Lorentz
transformation case), the gradient of a vector (or any larger-rank tensor) is not a tensor:

∂′µA
α ≡ ∂Aα

∂x′ µ
=

∂

∂x′ µ

(
∂x′ α

∂xν
Aν
)

=
∂xβ

∂x′ µ
∂

∂xβ

(
∂x′ α

∂xν
Aν
)

=
∂xβ

∂x′ µ

(
∂2x′ α

∂xβ∂xν
Aν
)

+
∂xβ

∂x′ µ
∂x′ α

∂xν

(
∂Aν

∂xβ

)
(2.14)

The last term looks like the transformation law for a tensor quantity with one upper and one lower index, but
the first term in the last line does not. This term did not arise in the Lorentz transformation case because
the Lorentz transformation coefficients are constant, implying that the double partial derivatives are all zero.

This is a serious problem, because many physics equations involve calculating derivatives of quantities
that will generalize to vectors or tensors of higher rank. We will address this problem in the next section.

2.3.1 Exercise: Parabolic coordinates.

Consider the parabolic coordinate system p, q shown in figure 2. The transformation functions from ordinary
cartesian x, y coordinates are (with c a constant having units of inverse meters):

p(x, y) = x and q(x, y) = y − cx2 (2.15)

(a) Show that the inverse transformation functions are

x(p, q) = p and y(p, q) = cp2 + q (2.16)

(b) The eight partial derivatives ∂x′ µ/∂xν and ∂xµ/∂x′ ν in this case are

∂p

∂x
= 1,

∂p

∂y
= 0,

∂q

∂x
= −2cx,

∂q

∂y
= 1 (2.17)

∂x

∂p
= 1,

∂x

∂q
= 0,

∂y

∂p
= 2cp,

∂y

∂q
= 1 (2.18)

The metric tensor components for cartesian coordinates in space are gxx = gyy = 1, gxy = gyx = 0.
Use the general tensor transformation rule to show that the metric tensor for p, q coordinates is

g′µν =

[
1 + 4c2p2 2cp

2cp 1

]
(2.19)
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(c) Let a vector A have components Ap = 1, Aq = 0 in the p, q coordinate system. Find this vector’s
components in the x, y coordinate system (as a function of x and y). But show that A2 = A � A has
the same value in both coordinate systems at every position.

2.4 The Tensor Gradient

To see more clearly why the simple gradient of a vector field is not a tensor consider the simple case of a
constant vector field A(xµ) in a flat two-dimensional space. In flat space at least, we can define “constant”
in a coordinate-independent way by saying that at all points, the vector points in the same direction and
has the same magnitude. Therefore the physical gradient of such a field should be zero in any coordinate
system (because the vector does not change as we change positions). In a cartesian coordinate system, the
components Aµ of such a field are constant, so ∂αA

µ = 0 as expected. But in a curvilinear coordinate system,
the components of even a truly constant vector field may not be constant, because the basis vectors used to
define the components change as one goes from point to point. We need to find a way to correct ∂αA

µ in
such a coordinate system so as to remove the part due to changes in the basis vectors if we hope to find the
true change in the vector function A(xµ).

Tensor Gradient of a Vector. Let us define a set of coefficients Γ ννα (which we call Christoffel
symbols) at a given point or event P such that

∂eα
∂xµ

≡ Γ νµαeν (2.20)

The numerator here is the differential change in the basis vector eα as we move from point P to a point
a differential displacement dxµ along a curve where the other coordinates are constant, divided by that
differential displacement dxµ (where α and µ have some specific values here). Since the change ∂eα is a
vector (an arrow with a certain magnitude pointing in a certain direction), we can write that change as a
sum over the basis vectors eν evaluated at point P: this is the point of the sum over ν. In a two-dimensional
space, there are 8 such coefficients; in four-dimensional spacetime, there are 64 such coefficients.

Now consider a vector field A that is a function of position. The product rule implies that the true
amount dA that A changes when we move an arbitrary infinitesimal displacement ds (whose components are
some specific set of components dxα) is

dA = d(Aµeµ) =

(
∂Aµ

dxσ
dxσ

)
eµ +Aµ

∂eµ
∂xα

dxα (2.21)

One can use equation 2.20 and rename some indices to rewrite this as

dA =

[
∂Aµ

∂xα
+ ΓµανA

ν

]
eµdx

α ≡ (∇αAµ)eµdx
α (2.22)

The quantities (∇αAµ)dxα for different values of µ are by definition components (in whatever coordinate
system we are using) of the true change in A for that differential displacement. Therefore, we define

∇αAµ ≡
∂Aµ

∂xα
+ ΓµανA

ν (2.23)

to be the tensor gradient of the vector field A: the term involving the Christoffel symbols corrects the
partial derivative of the field for the variations in the basis vectors. The tensor gradient ∇αAµ must be a
(second-rank) tensor, because we see that equation 2.22 implies that (∇αAµ)dxα yields the components of a
vector. However, neither the partial derivative alone nor the Christoffel symbol alone are tensors: only the
combination given by equation 2.23 is a tensor.

The Tensor Gradient of a Covector. To determine a covector’s tensor gradient, we can take advantage
of the fact that AµBµ is a scalar, and the tensor gradient of a scalar is the same as its ordinary gradient:

∂α(AµBµ) =
∂Aµ

∂xα
Bµ +Aµ

∂Bµ
∂xα

= ∇α(AµBµ) = (∇αAµ)Bµ +Aµ(∇αBµ) (2.24)
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Subtracting one side from the other and substituting what we know ∇αAµ to be yields

0 =
∂Aµ

∂xα
Bµ +Aµ

∂Bµ
∂xα

− (∇αAµ)Bµ −Aµ(∇αBµ)

=
�
�
��∂Aµ

∂xα
Bµ +Aµ

∂Bµ
∂xα

−
�

�
��∂Aµ

∂xα
Bµ − (ΓµανA

ν)Bµ −Aµ(∇αBµ)

= Aµ
[
∂Bµ
∂xα

− Γ ναµBν −∇αBµ
]

(2.25)

where in the last step, I exchanged the µ, ν index names in the third term of the line above so that I could
pull out the common factor of Aµ. Since this must be true for arbitrary four-vectors A, the quantity in
brackets must be zero for all index values µ, implying that

∇αBµ =
∂Bµ
∂xα

− Γ ναµBν (2.26)

The Tensor Gradient of a Tensor. The generalization to arbitrary tensors (e.g., T µν
σ ) is not hard:

∇αT µν
σ =

∂T µν
σ

∂xα
+ Γ µ

αβT
βν
σ + Γ µ

αδT
µδ
σ − Γ γ

ασT
µν
γ (2.27)

The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christoffel symbol (times the tensor) for each upper index (summing over that index and the second lower
Christoffel symbol index) and a negative Christoffel symbol term (times the tensor) for each lower index
(summing over that index and the upper Christoffel symbol index.

Calculating Christoffel Symbols. We will assume in what follows that the Christoffel symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):

Γαµν = Γανµ (2.28)

Given this assumption, one can calculate Christoffel symbols in terms of the metric tensor as follows (the
proof is one of your homework problems):

Γαµν = 1
2g
ασ [ ∂µgνσ + ∂νgσµ − ∂σgµν ] (2.29)

This is easier to remember than one might think. A factor of the inverse metric generates the Christoffel
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.

2.4.1 Exercise: The Tensor Gradient in Parabolic Coordinates.

Consider the parabolic coordinate system described in the previous exercise, where p(x, y) = x and q(x, y) =
y− cx2. Consider a truly constant vector field in Cartesian coordinates defined so that Hx = 1 and Hy = 0.

(a) Find the components of H in the p, q coordinate system.

(b) In the previous exercise, we found the metric tensor for p, q coordinates to be

g′µν =

[
1 + 4c2p2 2cp

2cp 1

]
(2.30)

Verify (by matrix multiplication) that the inverse metric is given by

g ′µν =

[
1 −2cp
−2cp 1 + 4c2p2

]
(2.31)

(c) The Christoffel symbols for p, q coordinates are

Γ qpp = 2c, all other Γαµν = 0 (2.32)

(This makes sense, because we can see from Figure 2 that only the ep unit vector changes with position,
and then only in the q direction as we vary p.) Use Γαµν = 1

2g
ασ [ ∂µgνσ + ∂νgσµ − ∂σgµν ] to verify

that these are the correct values for Γ qpp and Γ ppp.

(d) Calculate all four components of ∇µHν in p, q coordinates. Are the results what you expect?
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2.5 The Geodesic Equation.

The four-velocity u = ds/dτ at every event along a particle’s worldline is a vector parallel to the differential
displacement ds that the particle moves during a differential proper time dτ (as measured by a clock traveling
with the particle). The four-velocity is therefore always tangent to the particle’s worldline. Now a geodesic
is by definition “the straightest possible” path at every point. A mathematical way to define such a path is
to say that at all events along the particle’s worldline, the particle’s four-velocity is constant: du/dτ = 0.

In a curved space or spacetime, what we mean by this is that the vector u does not change direction
during an infinitesimal step of proper time dτ , as we would determine in a cartesian coordinate system set
up in a patch of area around the particle that is small enough to be considered locally flat. For example,
we might map a great circle on the earth’s surface by laying out a cartesian coordinate system on a city-
sized patch, draw a straight line in that coordinate system a couple of kilometers long, then set up a new
coordinate system centered at the endpoint, draw a new straight line segment, and repeat.

In an arbitrary coordinate system in a curved or flat space or spacetime, we can calculate this path
mathematically as follows:

0 =
du

dτ
=

d

dτ
(uµeµ) =

duu

dτ
eµ + uµ

deµ
dτ

(2.33)

Now, eµ depends on τ because the particle’s position in spacetime depends on τ and eµ depends on position.
So using the chain rule and substituting uµ ≡ dxµ/dτ into the above, we find that

0 =
d2xu

dτ2
eµ +

dxµ

dτ

dxν

dτ

deµ
dxν

=
d2xu

dτ2
eµ +

dxµ

dτ

dxν

dτ
Γαµνeα =

[
d2xu

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ

]
eµ

⇒ 0 =
d2xu

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
(2.34)

where in going to the last step on the first line, I renamed the bound µ, ν, α indices in the last term to α, β, µ,
respectively. The last line follows because a vector will only be zero if each of its components are zero. The
last equation is the geodesic equation: it represents four second-order differential equations that one can
solve to yield the equations xµ(τ) that parametrically describe a geodesic in an arbitrary coordinate system
in an arbitrary curved or flat space or spacetime. Note that in flat spacetime, where the metric gµν = ηµν =
constant, all the Christoffel symbols (which involve derivatives of the metric) are zero, and the geodesic
equation yields dxµ/dτ2 = 0, whose solutions are straight worldlines, as we would expect.

The geodesic equation is one of the two core equations of general relativity. It expresses the first clause
of Wheeler’s aphorism: “Spacetime tells matter how to move.” If we know the metric of spacetime in any
coordinate system, we can use this equation to calculate the worldlines of free particles in that spacetime.

2.5.1 Exercise: Geodesics in Parabolic Coordinates.

Consider the parabolic coordinate system for two-dimensional flat space described in the previous two exer-
cises, where p(x, y) = x and q(x, y) = y − cx2. In a two dimensional space like this, we parameterize paths
using the arclength s along the path instead of the proper time, so the geodesic equation becomes

0 =
d2xu

ds2
+ Γµαβ

dxα

ds

dxβ

ds
(2.35)

and we look for solutions of the form xµ(s). We found in the last exercise that the Christoffel symbols for
this coordinate system all zero except for Γ qpp = 2c.

(a) Find the p and q components of the geodesic equation.

(b) The solution to the p-component equation is easy: p = as, where a is a constant of integration, if we
define s to be zero where p is zero. Use this to show that the solution to the q-component equation is
q = −ca2s2 + bs+ q0, where b and q0 are constants of integration.

(c) The transformations back to cartesian coordinates are x(p, q) = p and y(p, q) = cp2 + q. Use these
transformations to convert the solutions for p(s) and q(s) to solutions for x(s) and y(s). Argue that
the resulting solutions are straight lines (Hint: Express y as a function of x.)
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2.6 Schwarzschild Geodesics.

As we will see in a subsequent lecture, one can solve the Einstein equation in the vacuum around a spherical
star to get the Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/r
+ r2dθ2 + r2 sin2 θ dφ2 (2.36)

(meaning that gtt = −(1− 2GM/r), grr = (1− 2GM/r)−1, gθθ = r2 and gφφ = r2 sin2 θ and the off-diagonal
metric components are zero). This is by no means the only solution even for the vacuum spacetime around
a spherical star, since we can redefine coordinates in completely arbitrary ways and so generate an infinite
number coordinate systems that describe the same physical reality. But this coordinate system does have
some advantages: it is independent of the time coordinate t (in a diagonal metric, the time coordinate is the
coordinate whose metric component is negative) and this metric reduces to the metric for flat spacetime (in
a spherical coordinate-basis) as r → ∞. I should note that though I am using units where time and space
are both measured in meters (so that c = 1), I am not using units where the universal gravitational constant
G = 1 as well, as is often done. I am doing this so that connections to Newtonian mechanics will be clearer.
But it is good to keep in mind that in this unit system GM has units of meters, and in fact GM = 1477 m
for a star with the mass of the sun (and is 4.45 mm for the Earth).

It is not my purpose here to discuss the many fascinating features of this metric: it looks like others
may talk about that, and the topic is somewhat tangential to the main line of my argument. But I want to
introduce this metric so that we can explore the implications of the geodesic equation in a realistic situation
(one that even applies to our daily lives!).

Consider a particle at least momentarily rest at some radial coordinate r. The spatial components of
such a particle’s four-velocity u are zero by definition (dr/dτ = dθ/dτ = dφ/dτ = 0), but in an arbitrary
coordinate system we cannot conclude that the four-velocity’s time component ut = dt/dτ , as we could in
special relativity. Rather, we must go back to the basic result for the magnitude of the four-velocity, which
(by definition of the differential proper time) still says:

u � u ≡ uµgµνuν =
dxµ

dτ
gµν

dxν

dτ
=
gµνdx

µdxν

dτ2
=
ds2

dτ2
=
−dτ2

dτ2
= −1 (2.37)

For a particle at rest, this equation reduces to

−1 = uµgµνu
ν = gtt(u

t)2 + 0 + 0 + 0 ⇒ ut =
dt

dτ
=

√
1

−gtt
=

1√
1− 2GM/r

(2.38)

This equation says that a clock attached to a particle at rest registers a proper time between events along its
worldline that is smaller than the Schwarzschild coordinate time t between those events. This one consequence
of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a “time coordinate,”
is not the time that just any clock at any finite r would read, but rather a kind of global bookkeeper’s time
stamp. It only coincides with the time that a clock would directly read if the clock is at rest at infinity.

The r-component of the geodesic equation in this situation says that the particle’s radial coordinate
proper acceleration is given by

d2r

dτ2
= −Γ rµν

dxµ

dτ

dxν

dτ
= −Γ rttutut + zeros (2.39)

So to evaluate this radial acceleration, we only need to evaluate

Γ r
tt = 1

2g
rα(∂tgtα + ∂tgαt − ∂αgtt) = 1

2g
rr(0 + 0− ∂rgtt)

= −1

2

(
1− 2GM

r

)
d

dr

(
−1 +

2GM

r

)
= +

(
1− 2GM

r

)
GM

r2
(2.40)

Substituting this into the geodesic equation yields

d2r

dτ2
= −Γ rttutut = −GM

r2

(
1− 2GM

r

)
1

1− 2GM/r
= −GM

r2
(2.41)

This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
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because radial distance a particle moves between two events as it falls radially is not quite the same as the
difference dr in the radial coordinate r. In fact, according to the metric, the spatial distance between two
events that occur at the same time but at points with a purely radial coordinate separation of dr is

ds =
√
ds2 =

√
gµνdxµdxν =

√
grrdr2 + zeros =

dr√
1− 2GM/r

(2.42)

However, as long as r > 2GM , this distinction is not important. For example, at the surface of the earth,
where r = 6380 km and 2GM ≈ 0.9 cm, we’d have to keep track better than 8 decimal places in our
measurements to notice that the Newtonian result for falling objects is not correct.

Still, there is an important lesson here that I am going to repeat over and over in the days to come.
Coordinates by themselves have no physical meaning. Calling coordinates t, r, θ, φ may cause you to
think that you know what they mean, but we could have called these coordinates anything. The only thing
that gives coordinates physical meaning is the metric, which is what anchors human coordinates to
physical reality. One must always resort to the metric to learn what your coordinates actually mean.

This is a tricky idea, because we are so used to working with coordinates in flat spacetime (for example,
spherical coordinates with an orthonormal basis) that have a reasonably direct intuitive meaning. But in
general relativity, we have to give this up and use the metric exclusively to learn about what coordinates
mean. But if you find this hard to grasp or remember, be comforted. Even Einstein struggled with this in
the months leading up to his final November 1915 paper describing the Einstein equation. 2

2.6.1 Exercise: Free-Fall from Infinity.

It turns out one solution to the full geodesic equation for a radially falling particle is dr/dτ = −
√

2GM/r.
At what value of r is the particle at rest? At what value of r is dr/dτ = 1? Does that necessarily mean that
it is traveling at the speed of light?

2.7 Locally Orthonormal and Locally Inertial Frames.

The problem with restricting ourselves to coordinate bases is that the kinds of coordinate systems that we
use every day in the laboratory employ orthonormal basis vectors. If we want to know what a particle’s
energy or velocity or some other physical quantity would be “according to (some specified) observer,” we
are implicitly assuming that the observer is doing his or her measurements or calculations using a frame
having a standard orthonormal basis. The purpose of this section is to explore a trick for transforming
tensor quantities to such a frame.

The local flatness theorem is important in this context (and will be important to us later as well). A
statement of the theorem follows.

At any given event P in spacetime, our freedom to choose coordinates allows us to construct a
coordinate system where (1) gµν(P) = ηµν (with six degrees of freedom left over that correspond
to arbitrary rotations and Lorentz boosts), (2) all 40 of the independent values of ∂αgµν |P = 0,
and (3) all but 20 of the 100 independent values of ∂α∂βgµν |P equal to zero.

The proof of this theorem is too involved to go into here: if you are interested, look at pp. 207-209 in
my textbook.3 But the result is very important. It tells us that at every event in spacetime, we can (in
principle) construct a reference frame that at least locally (if we don’t get too far from event P) behaves like
laboratories we are used to.

We call a reference frame where gµν(P) = ηµν a locally orthonormal frame (LOF), because ηµν =
gµν ≡ eµ � eν means that the basis vectors for this coordinate system are orthogonal and have unit length,
at least at event P. If our coordinate system only satisfies this first criterion but not the second (meaning
that we don’t bother to set the first derivatives of the metric equal to zero), then at least some Christoffel
symbols will not be zero, and geodesics will not be straight lines in our coordinate system. This would be
analogous to a laboratory coordinate system at rest on the surface of the Earth. We can definitely set up
such a coordinate system (we do it all the time), but geodesics (the worldlines of freely falling particles) are
not straight lines in such a coordinate system.

We call a LOF that also satisfies the second criterion (all the first derivatives of the metric are zero)
a locally inertial frame (LIF). In this frame, the Christoffel symbols are all zero, and the worldlines of
geodesics are (locally) straight lines. Near the earth’s surface, such a frame would be a freely-falling frame,
such as the reference frame in a falling elevator or the International Space Station. In such a frame, we
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would need to look at geodesics over fairly large distances (or for fairly long times) to see the tidal effects
that distinguish a freely-falling frame from a globally inertial frame in deep space. But no matter how good
our coordinate system is, we will eventually see such effects, because we cannot set all of the second metric
derivatives to zero (and thus first derivatives of the Christoffel symbols) to zero. This means that as we
move far enough away from P in space and/or time, we will eventually see the geodesics begin to converge
or diverge as the Christoffel symbols begin to become appreciably nonzero.

But how can we transform quantities expressed in Schwarzschild coordinates into values we would measure
in either a LOF or LIF? In principle, if we knew the coordinate transformation equations from Schwarzschild
coordinates to the new coordinates, then we could use the normal tensor transformation rule. But it is
usually very difficult to derive those transformation equations.

Fortunately, there is another way. Suppose we want to know the components of a four-vector A in a
certain LOF, and suppose we know the orthonormal basis vectors eµ of the LOF, which we will take to be
the primed frame. Since in any coordinate basis A = Aνe ′ν and g′µν ≡ e ′µ � e ′ν , we have

e ′µ � A = e ′µ � e ′νA
′ ν = g′µνA

′ ν = A′µ (2.43)

In our particular LOF, g′µν = ηµν by definition, so we can say that

ηαµ(e ′µ � A) = ηαµA′µ = A′ α (2.44)

So, we can evaluate the components of the vector A in any LOF if we can evaluate the dot product of A
with the LOF’s basis vectors e ′µ.

The clever trick is that since the dot product must have a coordinate-independent value, we can evaluate
the dot product in whatever global coordinate system (such as the Schwarzschild coordinate system) that
describes our spacetime. All that we need to is to evaluate the Schwarzschild components of both the LOF’s
basis vectors e ′µ and the four-vector A of interest.

Consider the following application. Suppose we have a particle that is falling from rest at infinity in
Schwarzschild spacetime, and we would like to know the particle’s ordinary velocity according to an ob-
server at rest at a given Schwarzschild coordinate r. In order to do this calculation, we must first find the
Schwarzschild coordinates of the observer’s LOF basis vectors, which we will call oT , ox, oy, and oz, corre-
sponding to the observer’s time T and spatial x, y, z coordinates, respectively. (Note that the observer’s time
coordinate T is not the Schwarzschild time coordinate t: this is why I am giving them different names. In
what follows, we will assume that AT , Ax, Ay, Az refer to the components of A evaluated in the LOF, and
At, Ar, Aθ, Aφ to its components in the Schwarzschild system. This will avoid all the primes.)

We begin by noting that the observer’s four-velocity uobs is appropriately normalized for a time basis
vector (uobs � uobs = −1). Also, the observer is not moving in his or her reference frame, so this vector
points purely in the observer’s time direction. Therefore, oT must be uobs. What are the Schwarzschild
components of this four-vector? These components are [ut, ur, uθ, uφ ]obs = [dt/dτ, dr/dτ, dθ/dτ, dφ/dτ ]obs
by definition. If the observer is at rest relative to the Schwarzschild coordinates, then we know that dr =
dθ = dφ = 0 ⇒ urobs = uθobs = uφobs = 0. We can then compute utobs using uobs � uobs = −1:

−1 = gµνu
µ
obsu

ν
obs = gtt(u

t
obs)

2 ⇒ utobs =
1√
−gtt

=
1√

1− 2GM/r
(2.45)

We know that the Schwarzschild basis vectors are orthogonal at every point (because the Schwarzschild
metric is diagonal), so we can conveniently choose the observer’s spatial basis vectors to align with the
Schwarzchild basis vectors. Let’s choose oz parallel to the Schwarzschild +er (that is, “upward”), ox parallel
to +eφ, and oy to be parallel to −eθ (the minus sign is necessary to make the observer’s coordinate system
right-handed, as you can check with your fingers). This means that the only nonzero Schwarzschild compo-
nents of ox, oy and oz are their φ, θ, and r components, respectively. The only thing we then need to do is
ensure that the observer’s basis vectors normalized. For the oz vector, we have

1 = oz � oz = gµν(oz)
µ(oz)

ν = grr(oz)
r(oz)

r ⇒ (oz)
r =

1
√
grr

=
√

1− 2GM/r (2.46)

and all other Schwarzschild components of the basis vectors are zero. One can find the components of the
other basis vectors similarly.
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Now, as we saw in exercise 2.6.1, a radially falling particle yields ur = dr/dτ = −
√

2GM/r if we assume
the particle started at rest at infinity. Then −1 = u � u requires that

−1 = gtt(u
t)2 + grr(u

r)2 = −
(

1− 2GM

r

)
(ut)2 +

(
1

1− 2GM/r

)
2GM

r

⇒ −
(

1−
�
�
�2GM

r

)
= −

(
1− 2GM

r

)2

(ut)2 +
�
�
�2GM

r
⇒ ut =

1

1− 2GM/r
(2.47)

in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
So, to summarize, the Schwarzschild coordinates of all the vectors of interest are:

[ (oT )t, (oT )r, (oT )θ, (oT )φ ] =

[
1√

1− 2GM/r
, 0, 0, 0

]
(2.48a)

[ (oz)
t, (oz)

r, (oz)
θ, (oz)

φ ] =
[

0,
√

1− 2GM/r, 0, 0
]

(2.48b)

[ ut, ur, uθ, uφ ] =

[
1

1− 2GM/r
, −2GM

r
, 0, 0

]
(2.48c)

We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:

uT = ηTµoµ � u = ηTT oT � u = (−1)(oT )αgαβu
β = −(oT )tgttu

t

= +
1√

1− 2GM/r

(
1− 2GM

r

)
1

1− 2GM/r
=

1√
1− 2GM/r

(2.49a)

uz = ηzµoµ � u = ηzzoz � u = (+1)(oz)
αgαβu

β = +(oz)
rgrru

r

= −
√

2GM

r

1

1− 2GM/r

√
1− 2GM/r =

−2GM/r√
1− 2GM/r

(2.49b)

Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:

vx =
ux

uT
= 0, vy =

uy

uT
= 0, vz =

uz

uT
=

−2GM/r√
1− 2GM/r

√
1− 2GM/r = −2GM

r
(2.50)

The particle’s measured speed approaches that of light as the observer’s radial coordinate r → 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:

1. Use the observer’s four-velocity uobs as the the observer’s time-directed basis vector oT .

2. Construct a set of spatial basis vectors ox, oy, oz such that oµ � oν = ηµν .

3. Find the components of oµ in whatever global coordinate system describes spacetime on the large scale.

4. Also determine the components of the four-vector A of interest in that global coordinate system.

5. The components of the four-vector in the observer’s system are A′µ = ηµνoν � A, where one evaluates
the dot product oµ � A = gαβ(oµ)αAβ in the global coordinate system.

One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
can more easily interpret physically.

Appendix: More on Schwarzschild Geodesics

In this appendix, I will discuss a more extensive application of the geodesic equation in Schwarzschild
spacetime that I included in the original version of the talk but removed from the material I actually
discussed in the session for length reasons.
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To do more with the geodesic equation, we need to calculate more of the Christoffel symbols, which
is simply an example of applying equation 2.29 repeatedly until you have evaluated all 40 that might be
independent. There are various labor-saving ways to do this (including using computer tools), but a straight-
forward and low-tech way to do this is to use something that I call the Diagonal Metric Worksheet. This
worksheet assumes a diagonal metric of the form ds2 = −Ax0 +Bx1 + Cx2 +Dx3 (where the numbers are
placeholders for coordinate names, not exponents) and that the metric components A,B,C,D can depend
on any or all of the coordinates. The worksheet then simply lists all of the Christoffel symbols in terms of the
metric components and their derivatives (the latter written in a shorthand form where A0 ≡ ∂A/∂x0 and so
on. On a copy of the worksheet, one merely writes above each term what the Christoffel symbol evaluates
to for whatever the functions for A,B,C,D actually are in a given particular circumstance.

In the Schwarzschild case, we identify x0 = t, x1 = r, x2 = θ, x3 = φ, and A = 1 − 2GM/r,B =
(1 − 2GM/r)−1, C = r2, and D = r2 sin2 θ. First note that no metric component depends on t or φ, and
only D depends on θ, so a lot of the derivative terms that might appear in general will be zero. So we look
on the Diagonal Metric Worksheet, and see, for example that Γ 0

00 = Γ ttt = 1
2AA0 = 0, because A does not

depend on x0 = t. The next listing on the worksheet tells us that

Γ 0
01 = Γ 0

10 = 1
2AA1 ⇒ Γ ttr = Γ trt =

1

2(1− 2GM/r)

∂

∂r

(
1− 2GM

r

)
=

GM

r2(1− 2GM/r)
(2.51)

and the remaining entries on that line are zero because A does not depend on θ or φ. One can go through the
worksheet in a similar way to show that the complete set of nonzero Christoffel symbols for the Schwarzschild
coordinate system are (in addition to the pair evaluated above):

Γ rtt = Γ rtt =
GM

r2

(
1− 2GM

r

)
, Γ rrr =

−GM
r2(1− 2GM/r)

,

Γ rθθ = −(r − 2GM), Γ rφφ = −(r − 2GM) sin2 θ (2.52)

Γ θrθ = Γ θθr =
1

r
, Γ θφφ = − cos θ sin θ (2.53)

Γφrφ = Γφφr =
1

r
, Γφθφ = Γφφθ − cot θ (2.54)

Now let’s consider a particle in orbit around an object whose exterior geometry is described by the
Schwarzschild metric. Since the star and its surrounding spacetime are spherically symmetric, we can take
any plane through the star’s center to be the equatorial (θ = π/2) plane, and if the particle’s initial velocity
lies in that plane then it must stay on that plane by symmetry. So without loss of generality, we can consider
only orbits in the equatorial plane, where sin2θ = 1 and dθ/dτ = 0. Now, note under these circumstances
that the φ component of the geodesic equation implies that

0 =
d2φ

dτ2
+ Γφµν

dxµ

dτ

dxν

dτ
=
d2φ

dτ2
+ 2Γφrφ

dr

dτ

dφ

dτ
+ 2Γφθφ

dθ

dτ

dφ

dτ
(2.55)

since only these Christoffel symbols with φ in the upper position are nonzero. But the last term is zero
because dθ/dτ = 0, and substituting in the value of the remaining Christoffel symbol yields

0 =
d2φ

dτ2
+

2

r

dr

dτ

dφ

dτ
=

1

r2
d

dτ

(
r2
dφ

dτ

)
⇒ r2

dφ

dτ
= constant ≡ ` (2.56)

This expresses conservation of angular momentum, though the difference between Newtonian time and proper
time and the difference between the radial coordinate and radial distance means that we are redefining
“angular momentum” somewhat from the Newtonian definition. But this is indeed the conserved quantity
that follows from spherical symmetry according to Noether’s theorem.

The metric is likewise independent of t, so we would also expect a conserved quantity corresponding to
energy. Indeed, if we look at the time component of the geodesic equation in this case, we see that

0 =
d2t

dτ2
+ Γ tµν

dxµ

dτ

dxν

dτ
=
d2t

dτ2
+ 2Γ trt

dr

dτ

dt

dτ
=
d2t

dτ2
+

2GM

r2

(
1− 2GM

r

)
dr

dτ

dt

dτ

=
d

dτ

[(
1− 2GM

r

)
dt

dτ

]
⇒

(
1− 2GM

r

)
dt

dτ
= constant ≡ e (2.57)
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At r = ∞, where the Schwarzschild metric becomes the metric of flat spacetime, this becomes simply
e = dt/dτ , and (since t really does correspond to time measured by clocks at rest at infinity), this is the
equivalent to e = pt/m = E/m = 1/

√
1− v2, that is, the particle’s relativistic energy per unit mass. The

equation above therefore states that this quantity is conserved during an orbiting particle’s motion.
Since we are considering only motion in the equatorial plane, we already know that dθ/dτ = 0, so the

θ component of the geodesic equation will tell us nothing useful. We can in principle solve the equation’s
r component for dr/dτ , but it turns out to be equivalent and quicker to get dr/dτ from the requirement
that u � u = −1. The geodesic equation must preserve this magnitude, and once we have solved the other
components of the geodesic equation, the remaining component must enforce that restriction. Since the
equation u � u = −1 involves only first derivatives of xµ(τ), it should be the integral of what the remaining
geodesic component requires, so it saves us doing an integral. The remaining components of the particle’s
four-velocity (remembering that sin θ = 1 in the equatorial plane) must therefore obey the constraint

−1 = gµνu
µuν = −

(
1− 2GM

r

)(
dt

dτ

)2

+
1

1− 2GM/r

(
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= −
(

1− 2GM

r

)
e2

(1− 2GM/r)2
+

1

1− 2GM/r

(
dr

dτ

)2

+ r2
(
`

r2

)2

⇒ −1 +
2GM

r
= −e2 +

(
dr

dτ

)2

+

(
1− 2GM

r

)
`2

r2

⇒ 1
2 (e2 − 1) =

1

2

(
dr

dτ

)2

− GM

r
+

`2

2r2
− GM`2

r3
(2.58)

We recognize in this equation a conservation-of-energy-like equation for the radial kinetic energy per unit mass
1
2 (dr/dτ)2, where we have used conservation of angular momentum to absorb the kinetic energy associated
with dφ/dτ into a r-dependent pseudo-potential term. The equivalent Newtonian equation would be

E

m
=

1

2

(
dr

dt

)2

− GM

r
+

`

2r2
(2.59)

So (ignoring the subtle differences between the meanings of the r-coordinate and ` in the two equations and
the distinction between Newtonian time t and proper time τ), the new thing that equation 2.58 adds is the
final term. This term (which grows in importance as r becomes small), creates the distinctive features of
Einsteinian gravity relative to Newtonian gravity, including the precession of the perihelion, the fact that all
orbits are unstable for r < 6GM and so on.

We see that the geodesic equation (in combination with an appropriate metric) does lead to the behavior
that we expect of gravity from Newtonian mechanics (with some subtle adjustments). Moreover, the fact that
the adjustments can be verified experimentally (for example, by measuring the numerical value of Mercury’s
perihelion precession rate) lends strong credence to the value of the geodesic hypothesis.

Homework Problems

2.1 What is the metric for an r, θ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?

2.2 We can derive equation 2.29 as follows. Calculate the partial derivative of the metric and use the
definition of the metric gµν = eµ � eν and equation 2.20 that defines the Christoffel symbol:

∂gµν
∂xα

=
∂(eµ � eν)

∂xα
=
∂eµ
∂xα

� eν + eµ � ∂eν
∂xα

= Γ γµαeγ � eν + Γ βναeβ � eµ = Γ βµαgβν + Γ γναgγµ (2.60)

The following equations are equivalent (I have simply renamed the 3 free lower indices cyclically:

∂gαµ
∂xν

= Γ βανgβµ + Γ γµνgγα and
∂gνα
∂xµ

= Γ βνµgβα + Γ γαµgγν (2.61)

Add two of these equations and subtract the third and take advantage of the symmetry of the metric
and the symmetry of the Christoffel symbol’s lower indices to simplify the result. Then multiply both
sides by 1

2 and the inverse metric, and contract over one upper index of that inverse metric to get
equation 2.29.
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2.3 Calculate the Christoffel symbols for θ, φ coordinates on the surface of a two-dimensional sphere of
radius R, where the metric is gθθ = 1, gφφ = R2 sin2 θ, gθφ = gφθ = 0.

2.4 What is the four-velocity of a particle dropped from rest at radius r0 in Schwarzschild spacetime, as a
function of proper time τ , after it is dropped? (Note: Requires material in the appendix.)

2.5 We can evaluate the LOF components of a general tensor as follows.

(a) Consider a covectorB. Note that in the global coordinate system we can find its vector components
as follows: Bα = gαβBβ . Then use the equation for the transformation for vector components to
argue that B′µ = (oµ)νBν .

(b) Now consider a second-rank tensor T that is the tensor product of A and B. Show that its
components in the LOF must be given by

T ′µν = ηµαT γσ gγρ(oα)ρ(oµ)σ (2.62)

(c) Let’s assume (plausibly) that this applies to such a second-rank tensor even if it isn’t formed of
the product of a four-vector and a covector. Using the same general pattern, write down the
transformation rule for the fourth-rank tensor Mα µ

β ν .

2.6 Find the orthonormal basis vectors oT , ox, oy and oz for a LIF that is freely falling from rest at infinity
in Schwarzschild spacetime. (Hint: To make it orthogonal to the oT vector in this case, oz will have
to have a t component as well as an r component. You can determine these components by requiring
that oT � oz = 0 and oz � oz = 1. The other spatial vectors will not require such a component.)

Notes
1The symmetry of the Christoffel symbol cannot be proved from the stated fundamental principles of general relativity:

it is a hidden assumption of the theory. However, the kinds of curved spacetimes that result from embedding a surface in
a Euclidean spacetime of higher dimension are torsion-free (see Hobson, et al. General Relativity, Cambridge, 2006, p. 65).
Various theorists have explored the consequences of relaxing that assumption, but there is no consensus about how spacetime
torsion might be related the sources of the gravitational field or anything else. In any case, a theory with spacetime torsion is
not general relativity.

2Pais, Subtle is the Lord, Oxford, 1982, pp. 250-256.
3Moore, A General Relativity Workbook, University Science Books, 2013. The argument here is actually not an iron-clad

“proof,” but a strong plausibility argument.
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