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Figure 1: This drawing shows an arbitrary coordinate system in a possibly curved space, a point P, the basis
vectors e

u

, e
w

at that point, and a close-up view of how we define the basis vectors so that an infinitesimal
displacement ds is the vector sum of the basis vectors times simply du and dw respectively.

I am not going to emphasize rigor in what follows, but rather an intuitive approach that I think will help
you quickly develop a working understanding of the mathematics. Some might complain about all of the
assumptions I am leaving unstated and the hands that I am waving, but my time with you is too short.

No matter how we construct our coordinate system, the di↵erential distance ds between two infinitesimally
separated points in a two-dimensional space (or the spacetime separation between two events in a spacetime)
is a coordinate-independent quantity, because we can measure it directly with a ruler (or a clock in spacetime)
without having to define a coordinate system at all. The fundamental way that we connect arbitrary
coordinates to physical reality is by specifying how the spacetime separation between two infinitesimally-
separated points (or events) depends on their coordinate separations.

Let’s first consider a two-dimensional flat space. In such a space, a cartesian xy coordinate system
is one in which the distance ds between two infinitesimally-separated points is given by ds2 = dx2 + dy2

at all points in the space. A curvilinear coordinate system is any non-cartesian coordinate system where
this simple pythagorean relationship is not true. How can we connect the coordinate-independent distance
between two points with their coordinate separations in such a case?

Consider arbitrary coordinates u,w for a 2D space. When using index notation, we will interpret dxu as
being equivalent to du, and dxu as being equivalent to dw, and we will assume that Greek indices have two
possible values u and w. (In the last session, in the context of cartesian coordinates in non-curved spacetime,
I stated that indices could represent either t, x, y, or z, but when we use arbitrary coordinates, the indices
take on values corresponding to whatever names the coordinate have.) I will also represent vectors in this
two-dimensional space with the same bold-face notation as we used for four-vectors last time. This will keep
the notation from changing when we generalize to 4D spacetimes.

Now, no matter how our u, w coordinate system is defined, at each point P in the space, we can define
a pair of basis vectors e

u

, e
w

such that

1. e
u

points tangent to the w = constant curve toward increasing values of u.

2. e
w

points tangent to the u = constant curve toward increasing values of w.

3. Their lengths are defined so that the displacement vector ds between a point P at coordinates u,w
and an infinitesimally separated neighboring point Q at coordinates u+ du,w + dw can be written

ds = du e
u

+ dw e
w

= dxµe
µ

(See figure 1.) (2.1)

(Note: the lower index on e
µ

tells us which basis vector, not which component, we are talking about.)

Now, this only works for di↵erential separations, because the directions of the basis vectors change as
we move significant distances. Moreover, vector addition as I have illustrated it in Figure 1 is really only
defined in a flat space. In a curved space, the separation between P and Q must be so small that we can
treat the space as flat, just as we treat a city map as flat on the curved surface of the earth. (Technically,
we are doing this vector addition in a flat space that is tangent to the curved space at point P.)
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Coordinate Basis
Define a four-vector’s components so that

Now, if we define basis vectors this way, then du and dw become the components of ds in that basis and
we call the set of basis vectors e

u

, e
w

a coordinate basis. A coordinate basis is generally di↵erent than
the cartesian coordinate basis vectors e

x

, e
y

in that (1) e
u

and e
w

may not be perpendicular, (2) e
u

and e
w

may not have unit length, and (3) e
u

and/or e
w

may change in magnitude and/or direction as we move from
point to point. It is also important to note that defining a coordinate basis is not the only way to define
a set of basis vectors or a coordinate system. For example, standard polar coordinates in two-dimensional
flat space and spherical coordinates in a three-dimensional flat space do not use a coordinate basis, because
the basis vectors in those coordinate systems always have unit magnitude. Using a coordinate basis makes
components of the displacement vector ds simpler (at the expense of complexity in the basis vectors), and
this turns out to be crucial in what follows.

Once we have defined a coordinate basis for coordinates u and w, then we define the components of a
four-vector A at any point P to be Au, Aw such that

A = Aue
u

+Awe
w

= Aµe
µ

(2.2)

This ensures that the components of ds and A transform alike.
Now, the scalar product of ds with itself is the square of the physical distance between the endpoints of

the displacement it represents:

ds2 = ds ⇧ ds = (du e
u

+ dw e
w

) ⇧ (du e
u

+ dw e
w

)

= du2e
u

⇧ e
u

+ du dw e
u

⇧ e
w

+ dw dw e
w

⇧ e
u

+ dw2 e
w

⇧ e
w

= dxµdx⌫ e
µ

⇧ e
⌫

⌘ g
µ⌫

dxµdx⌫ (2.3)

The set of four components g
µ⌫

= e
µ

⇧ e
⌫

represents the metric tensor of our two-dimensional coordinate
basis. Note that because both the magnitudes and directions of the basis vectors depend on position, the
value of g

µ⌫

also generally depends on position. But since the dot-product of vectors is commutative, this
definition implies that the metric is always symmetric: g

↵�

= g
�↵

. This means that the metric of a two-
dimensional space has only 3 independent components, and in spacetime, the metric has 10 independent
components (of the 16 possible combinations of index values, 4 involve the same value repeated and the half
of the remaining 12 are the same as the other half, for a total of 4 + 6 = 10).

You can easily see how we can generalize this to four dimensions in spacetime. In spacetime, g
µ⌫

=
e
µ

⇧ e
⌫

(where the indices now range over four values) represents the generalization of the metric tensor ⌘
µ⌫

introduced in the last session. In flat spacetime, we can always find a cartesian coordinate basis where the
basis vectors are everywhere orthogonal (e

µ

⇧ e
⌫

= 0 for µ 6= ⌫), and have unit magnitude (e
µ

⇧ e
⌫

= ±1 when
µ 6= ⌫, with �1 indicating a time coordinate) at all events and still have the components of the di↵erential
four-displacement ds be simply dt, dx, dy, and dz. This is not generally possible in curved spacetime. The
quantity ds2 = g

µ⌫

dxµdx⌫ generalizes this idea for an arbitrary coordinate system using a coordinate basis
in an arbitrary spacetime. The quantity ds represents the spacetime separation if the events at ends of the
di↵erential displacement have a spacelike separation, and d⌧ =

p
�ds2 is the infinitesimal spacetime interval

(which is the same as the proper time in the infinitesimal limit) between the events if they have a timelike
separation. The point is that the metric connects the arbitrary coordinates with the physical distances or
intervals in the physical universe behind that coordinate system.

2.2.1 Exercise: The Metric for Spherical Coordinates

Consider ✓-� coordinates on the surface of a sphere of radius R, where curves of constant ✓ and � are lines of
latitude and longitude, respectively (but assume that ✓ = 0 at the north pole, as is normal in physics, rather
than at the equator). Note that these curves are perpendicular everywhere but the poles. By considering
what the formula for ds2 between infinitesimally-separated points must be in terms of d✓ and d�, find
the metric components g

✓✓

, g
✓�

, g
�✓

, and g
��

as a function of position for a coordinate basis based on the
coordinates ✓ and �. Also, what are the lengths of the e

✓

and e
�

basis vectors as a function of position?

2.3 Tensors in a Coordinate Basis

Again, for the moment, let’s go back to considering a two-dimensional, possibly curved surface in space.
Consider a general transformation between our original coordinates u,w to new coordinates p(u,w) and
q(u,w). The chain rule for partial derivatives implies that infinitesimal changes in the new coordinates are
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Exercise
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Tensors in a coordinate basis
related to changes in the old coordinates as follows:

dp =
@p

@u
du+

@p

@w
dw and dq =

@q

@u
du+

@q

@w
dw (2.4)

If we consider the p, q coordinates the primed coordinate system and u,w coordinates the unprimed system,
then we can write this transformation rule compactly as

dx0 µ =
@x0 µ

@x⌫

dx⌫ (2.5)

(with an implicit sum over the ⌫ subscript: we will consider a superscript in the denominator of a partial
derivative to equivalent to a subscript).

Now note that in a coordinate basis, the values of dp and dq are the actual components of the infinitesimal
displacement vector ds in the primed system and du and dw are the same in the unprimed system. Since
by definition, the components of an arbitrary vector A transform in the same ways as the components of the
displacement vector, The transformation law for the components of A is

A0 µ =
@x0 µ

@x⌫

A⌫ (2.6)

Again, the extension to four-dimensional spacetime is straightforward. But this approach is only straight-
forward if we are using a coordinate basis, something that we will simply assume from now on.

Note in that context that equation 2.6 looks just like the transformation law for the components of a
four-vector in spacetime with @x0⌫/@xµ replacing ⇤µ

⌫

. Indeed, if you take partial derivatives of the Lorentz
transformation functions t0(t, x, y, z), x0(t, x, y, z), y0(t, x, y, z), and z0(t, x, y, z), you will see that in fact

@x0 µ

@x⌫

= ⇤µ

⌫

(2.7)

for that particular coordinate transformation. We see, therefore, that expressing the transformation coe�-
cients in terms of partial derivatives is consistent with but generalizes the transformation between cartesian
coordinates in inertial frames that we considered earlier.

Now, basic partial di↵erential calculus implies that

@x0 µ

@x⌫

@x⌫

@x0 ↵ = �µ
↵

(2.8)

For example, if we write this out for our u,w ! p, q transformations, this says that

@p

@u

@u

@p
+

@p

@w

@w

@p
=

dp

dp
= 1,

@p

@u

@u

@q
+

@p

@w

@w

@q
=

dp

dq
= 0,

@q

@u

@u

@p
+

@q

@w

@w

@p
=

dq

dp
= 0,

@q

@u

@u

@q
+

@q

@w

@w

@q
=

dq

dq
= 1 (2.9)

Equation 2.8 basically says that @x0 µ/@x⌫ and @xµ/@x0 ⌫ represent inverse transformations, analogous to
⇤µ

⌫

and (⇤�1)µ
⌫

in flat spacetime.
Now we can easily state generalized transformation laws for arbitrary tensors: an nth-rank tensor’s com-

ponents transform: we define an nth-rank tensor T↵··· �···
�··· to be an n-index object (with 4n components)

that transforms according to

T 0↵··· �···
�··· =

@x0 ↵

@xµ

· · · @x⌫

@x0 � · · · @x
0 �

@x�

· · ·Tµ··· �···
⌫··· (2.10)

that is, a partial-derivative factor with the primed coordinate in the numerator for every upper (superscript)
index and a a partial-derivative factor with the primed coordinate in the denominator for every lower (sub-
script) index. Using methods similar to what we did in the last session, you can prove in particular that the
metric is a tensor with two lower indices:

g0
µ⌫

=
@x0 ↵

@xµ

@x⌫

@x0 � g↵� (2.11)

that the Kronecker delta is still a tensor, that gµ⌫ defined such that gµ⌫g
µ↵

= �⌫
↵

(the matrix inverse of the
metric tensor), is still a tensor, that multiplying by g

µ⌫

and gµ⌫ and summing over µ still lowers or raises a
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Equation 2.8 basically says that @x0 µ/@x⌫ and @xµ/@x0 ⌫ represent inverse transformations, analogous to
⇤µ

⌫

and (⇤�1)µ
⌫

in flat spacetime.
Now we can easily state generalized transformation laws for arbitrary tensors: an nth-rank tensor’s com-
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that is, a partial-derivative factor with the primed coordinate in the numerator for every upper (superscript)
index and a a partial-derivative factor with the primed coordinate in the denominator for every lower (sub-
script) index. Using methods similar to what we did in the last session, you can prove in particular that the
metric is a tensor with two lower indices:
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for that particular coordinate transformation. We see, therefore, that expressing the transformation coe�-
cients in terms of partial derivatives is consistent with but generalizes the transformation between cartesian
coordinates in inertial frames that we considered earlier.
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that is, a partial-derivative factor with the primed coordinate in the numerator for every upper (superscript)
index and one with the primed coordinate in the denominator for every lower (subscript) index.

In particular, we can prove that the metric correctly transforms as a tensor with two lower indices as
follows. The coordinate-independence of the spacetime separation implies that
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Now, we can’t just divide both sides by dx0µdx0 ⌫ because a sum can be zero even if the individual terms in
the sum are not. But this relation must be true for arbitrary di↵erential displacements. So if I choose the
displacement to be entirely in the p direction (dw = 0), then the only nonzero term in the sum is the one
where µ = ⌫ = p, so the quantity in parentheses must be 0 when µ = ⌫ = p. In a similar way, I can choose
displacement components to show that all of the other components of that quantity must be zero as well:
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which is the correct transformation law for a tensor. Using similar methods, you can show that the Kronecker
delta is still a tensor, that gµ⌫ defined such that gµ⌫g
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↵

(the matrix inverse of the metric tensor), is
still a tensor, that multiplying by g

µ⌫

and gµ⌫ and summing over µ still lowers or raises a tensor index, that
contracting over an upper and lower index of a tensor quantity still yields a tensor with rank n� 2, etc.
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Tensors in a coordinate basis
Other tensors and tensor operations (which you can 
prove in a similar way):
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derivative to equivalent to a subscript).

Now note that in a coordinate basis, the values of dp and dq are the actual components of the infinitesimal
displacement vector ds in the primed system and du and dw are the same in the unprimed system. Since
by definition, the components of an arbitrary vector A transform in the same ways as the components of the
displacement vector, The transformation law for the components of A is
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Again, the extension to four-dimensional spacetime is straightforward. But this approach is only straight-
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Gradients
The gradient of a scalar is a covector:

tensor index, that contracting over an upper and lower index of a tensor quantity still yields a tensor with
rank n� 2, and so on. The gradient of a scalar � also still yields a tensor (covector): by the chain rule

@0
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@x0 µ =
@x⌫

@x0 µ
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@x⌫

=
@x⌫

@x0 µ (@⌫�) (2.12)

which is the correct generalized transformation law for a tensor with one lower index. However (unlike in
the Lorentz transformation case), the gradient of a vector (or any larger-rank tensor) is not a tensor: by the
chain and product rules
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The last term looks like the transformation law for a tensor quantity with one upper and one lower index, but
the first term in the last line does not. This term did not arise in the Lorentz transformation case because
the Lorentz transformation coe�cients are constant, implying that the double partial derivatives are all zero.

This is a serious problem, because many physics equations involve calculating derivatives of quantities
that will generalize to vectors or tensors of higher rank. We will address this problem in the next section.

2.3.1 Exercise: Parabolic coordinates.

Consider the parabolic coordinate system p, q shown in figure 2. The transformation functions from ordinary
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Figure 2: Parabolic coordinates for a flat two-dimensional plane. Adapted from Moore, A General Relativity
Workbook, University Science Books, 2013, p. 60.)

cartesian x, y coordinates are
p(x, y) = x and q(x, y) = y � cx2 (2.14)

where c is a constant with units of inverse meters.

(a) Show that the inverse transformation functions are

x(p, q) = p and y(p, q) = cp2 + q (2.15)

(b) Evaluate all eight partial derivatives @x0 µ/@x⌫ and @xµ/@x0 ⌫ .

(c) The metric tensor components for cartesian coordinates in space are g
xx

= g
yy

= 1, g
xy

= g
yx

= 0.
Use the general tensor transformation rule to show that the metric tensor for p, q coordinates is

g0
µ⌫

=


1 + 4c2p2 2cp

2cp 1

�
(2.16)

(d) Let a vector A have components Ap = 1, Aq = 0 in the p, q coordinate system. Find this vector’s
components in the x, y coordinate system (as a function of x and y). But show that A2 = A ⇧ A has
the same value in both coordinate systems at every position.
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The gradient of a vector is NOT a tensor:



Exercise:  Parabolic coordinates

tensor index, that contracting over an upper and lower index of a tensor quantity still yields a tensor with
rank n� 2, and so on. The gradient of a scalar � also still yields a tensor (covector): by the chain rule

@0
µ

� ⌘ @�

@x0 µ =
@x⌫

@x0 µ
@�

@x⌫

=
@x⌫

@x0 µ (@⌫�) (2.12)

which is the correct generalized transformation law for a tensor with one lower index. However (unlike in
the Lorentz transformation case), the gradient of a vector (or any larger-rank tensor) is not a tensor: by the
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The last term looks like the transformation law for a tensor quantity with one upper and one lower index, but
the first term in the last line does not. This term did not arise in the Lorentz transformation case because
the Lorentz transformation coe�cients are constant, implying that the double partial derivatives are all zero.

This is a serious problem, because many physics equations involve calculating derivatives of quantities
that will generalize to vectors or tensors of higher rank. We will address this problem in the next section.

2.3.1 Exercise: Parabolic coordinates.

Consider the parabolic coordinate system p, q shown in figure 2. The transformation functions from ordinary
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Figure 2: Parabolic coordinates for a flat two-dimensional plane. Adapted from Moore, A General Relativity
Workbook, University Science Books, 2013, p. 60.)

cartesian x, y coordinates are
p(x, y) = x and q(x, y) = y � cx2 (2.14)

where c is a constant with units of inverse meters.

(a) Show that the inverse transformation functions are

x(p, q) = p and y(p, q) = cp2 + q (2.15)

(b) Evaluate all eight partial derivatives @x0 µ/@x⌫ and @xµ/@x0 ⌫ .

(c) The metric tensor components for cartesian coordinates in space are g
xx

= g
yy

= 1, g
xy

= g
yx

= 0.
Use the general tensor transformation rule to show that the metric tensor for p, q coordinates is

g0
µ⌫

=


1 + 4c2p2 2cp

2cp 1

�
(2.16)

(d) Let a vector A have components Ap = 1, Aq = 0 in the p, q coordinate system. Find this vector’s
components in the x, y coordinate system (as a function of x and y). But show that A2 = A ⇧ A has
the same value in both coordinate systems at every position.
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Tensor gradient of a vector
Define Christoffel symbols:

2.4 The Tensor Gradient

To see more clearly why the simple gradient of a vector field is not a tensor consider the simple case of a
constant vector field A(xµ) in a flat two-dimensional space. In flat space at least, we can define “constant”
in a coordinate-independent way by saying that at all points, the vector points in the same direction and
has the same magnitude. Therefore the physical gradient of such a field should be zero in any coordinate
system (because the vector does not change as we change positions). In a cartesian coordinate system, the
components Aµ of such a field are constant, so @

↵

Aµ = 0 as expected. But in a curvilinear coordinate system,
the components of even a truly constant vector field may not be constant, because the basis vectors used to
define the components change as one goes from point to point. We need to find a way to correct @

↵

Aµ in
such a coordinate system so as to remove the part due to changes in the basis vectors if we hope to find the
true change in the vector function A(xµ).

Tensor Gradient of a Vector. Let us define a set of coe�cients � ⌫

⌫↵

(which physicists call Christo↵el
symbols) at a given point or event P such that
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(2.17)

The numerator here is the di↵erential change in the basis vector e
↵

as we move from point P to a point
a di↵erential displacement dxµ along a curve where the other coordinates are constant, divided by that
di↵erential displacement dxµ (where ↵ and µ have some specific values here). Since the change @e

↵

is a
vector (an arrow with a certain magnitude pointing in a certain direction), we can write that change as a
sum over the basis vectors e

⌫

evaluated at point P: this is the point of the sum over ⌫. In a two-dimensional
space, there are 8 such coe�cients; in four-dimensional spacetime, there are 64 such coe�cients.

Now consider a vector field A that is a function of position. The product rule implies that the true
amount dA that A changes when we move an arbitrary infinitesimal displacement ds (whose components are
some specific set of components dx↵) is

dA = d(Aµe
µ
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One can use equation 2.17 and rename some indices to rewrite this as
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The quantities (r
↵

Aµ)dx↵ for di↵erent values of µ are by definition components (in whatever coordinate
system we are using) of the true change in A for that di↵erential displacement. Therefore, we define

r
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A⌫ (2.20)

to be the tensor gradient of the vector field A: the term involving the Christo↵el symbols corrects the
partial derivative of the field for the variations in the basis vectors. The tensor gradient r

↵

Aµ must be a
(second-rank) tensor, because we see that equation 2.19 implies that (r

↵

Aµ)dx↵ yields the components of a
vector. However, neither the partial derivative alone nor the Christo↵el symbol alone are tensors: only the
combination given by equation 2.20 is a tensor.

The Tensor Gradient of a Covector. To determine a covector’s tensor gradient, we can take advantage
of the fact that AµB

µ

is a scalar, and the tensor gradient of a scalar is the same as its ordinary gradient:
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Now consider a vector field A that is a function of position. The product rule implies that the true
amount dA that A changes when we move an arbitrary infinitesimal displacement ds (whose components are
some specific set of components dx↵) is
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One can use equation 2.17 and rename some indices to rewrite this as
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The quantities (r
↵

Aµ)dx↵ for di↵erent values of µ are by definition components (in whatever coordinate
system we are using) of the true change in A for that di↵erential displacement. Therefore, we define
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to be the tensor gradient of the vector field A: the term involving the Christo↵el symbols corrects the
partial derivative of the field for the variations in the basis vectors. The tensor gradient r

↵

Aµ must be a
(second-rank) tensor, because we see that equation 2.19 implies that (r

↵

Aµ)dx↵ yields the components of a
vector. However, neither the partial derivative alone nor the Christo↵el symbol alone are tensors: only the
combination given by equation 2.20 is a tensor.

The Tensor Gradient of a Covector. To determine a covector’s tensor gradient, we can take advantage
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2.4 The Tensor Gradient
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6So we must have:

Aμ

where in the last step, I exchanged the µ, ⌫ index names in the third term of the line above so that I could
pull out the common factor of Aµ. Since this must be true for arbitrary four-vectors A, the quantity in
brackets must be zero for all index values µ, implying that

r
↵

B
µ

=
@B

µ

@x↵

� � ⌫

↵µ

B
⌫

(2.23)

The Tensor Gradient of a Tensor. The generalization to arbitrary tensors (e.g., T µ⌫
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) is not hard:
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The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christo↵el symbol (times the tensor) for each upper index (summing over that index and the second lower
Christo↵el symbol index) and a negative Christo↵el symbol term (times the tensor) for each lower index
(summing over that index and the upper Christo↵el symbol index.

Calculating Christo↵el Symbols. We will assume in what follows that the Christo↵el symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):
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(2.25)

Given this assumption, one can calculate Christo↵el symbols in terms of the metric tensor as follows (the
proof is one of your homework problems):
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This is easier to remember than one might think. A factor of the inverse metric generates the Christo↵el
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.

2.4.1 Exercise: The Tensor Gradient in Parabolic Coordinates.

Consider the parabolic coordinate system described in the previous exercise, where p(x, y) = x and q(x, y) =
y� cx2. Consider a truly constant vector field in Cartesian coordinates defined so that Hx = 1 and Hy = 0.

(a) Find the components of H in the p, q coordinate system.

(b) In the previous exercise, we found the metric tensor for p, q coordinates to be

g0
µ⌫

=


1 + 4c2p2 2cp

2cp 1

�
(2.27)

Verify (by matrix multiplication) that the inverse metric is given by

g 0µ⌫ =


1 �2cp

�2cp 1 + 4c2p2

�
(2.28)

(c) From equations 2.26 through 2.28, one can show that the Christo↵el symbols for p, q coordinates are

� q

pp

= 2c, all other �↵

µ⌫

= 0 (2.29)

(This makes sense, because we can see from Figure 2 that only the e
p

unit vector changes with position,
and then only in the q direction as we vary p.) Use equations 2.26 through 2.28 to verify that these
are the correct values for � q

pp

and � p

pp

.

(d) Calculate all four components of r
µ

H⌫ in p, q coordinates. Are the results what you expect?
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Tensor gradient of a tensor
One Christoffel term for each index:
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The Tensor Gradient of a Tensor. The generalization to arbitrary tensors (e.g., T µ⌫
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The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christo↵el symbol (times the tensor) for each upper index (summing over that index and the second lower
Christo↵el symbol index) and a negative Christo↵el symbol term (times the tensor) for each lower index
(summing over that index and the upper Christo↵el symbol index.

Calculating Christo↵el Symbols. We will assume in what follows that the Christo↵el symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):
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Given this assumption, one can calculate Christo↵el symbols in terms of the metric tensor as follows (the
proof is one of your homework problems):
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This is easier to remember than one might think. A factor of the inverse metric generates the Christo↵el
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.

2.4.1 Exercise: The Tensor Gradient in Parabolic Coordinates.

Consider the parabolic coordinate system described in the previous exercise, where p(x, y) = x and q(x, y) =
y� cx2. Consider a truly constant vector field in Cartesian coordinates defined so that Hx = 1 and Hy = 0.

(a) Find the components of H in the p, q coordinate system.

(b) In the previous exercise, we found the metric tensor for p, q coordinates to be
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Verify (by matrix multiplication) that the inverse metric is given by
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(c) From equations 2.26 through 2.28, one can show that the Christo↵el symbols for p, q coordinates are
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(This makes sense, because we can see from Figure 2 that only the e
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unit vector changes with position,
and then only in the q direction as we vary p.) Use equations 2.26 through 2.28 to verify that these
are the correct values for � q
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.

(d) Calculate all four components of r
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H⌫ in p, q coordinates. Are the results what you expect?
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Calculating Christoffel symbols:

We assume this symmetry (spacetime is “torsion-free”):
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The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christo↵el symbol (times the tensor) for each upper index (summing over that index and the second lower
Christo↵el symbol index) and a negative Christo↵el symbol term (times the tensor) for each lower index
(summing over that index and the upper Christo↵el symbol index.

Calculating Christo↵el Symbols. We will assume in what follows that the Christo↵el symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):
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Given this assumption, one can calculate Christo↵el symbols in terms of the metric tensor as follows (the
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This is easier to remember than one might think. A factor of the inverse metric generates the Christo↵el
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.
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The Tensor Gradient of a Tensor. The generalization to arbitrary tensors (e.g., T µ⌫
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The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christo↵el symbol (times the tensor) for each upper index (summing over that index and the second lower
Christo↵el symbol index) and a negative Christo↵el symbol term (times the tensor) for each lower index
(summing over that index and the upper Christo↵el symbol index.

Calculating Christo↵el Symbols. We will assume in what follows that the Christo↵el symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):
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Given this assumption, one can calculate Christo↵el symbols in terms of the metric tensor as follows (the
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This is easier to remember than one might think. A factor of the inverse metric generates the Christo↵el
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.

2.4.1 Exercise: The Tensor Gradient in Parabolic Coordinates.

Consider the parabolic coordinate system described in the previous exercise, where p(x, y) = x and q(x, y) =
y� cx2. Consider a truly constant vector field in Cartesian coordinates defined so that Hx = 1 and Hy = 0.
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(This makes sense, because we can see from Figure 2 that only the e
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unit vector changes with position,
and then only in the q direction as we vary p.) Use equations 2.26 through 2.28 to verify that these
are the correct values for � q
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(d) Calculate all four components of r
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H⌫ in p, q coordinates. Are the results what you expect?
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Exercise:

Subtracting one side from the other and substituting what we know r
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where in the last step, I exchanged the µ, ⌫ index names in the third term of the line above so that I could
pull out the common factor of Aµ. Since this must be true for arbitrary four-vectors A, the quantity in
brackets must be zero for all index values µ, implying that
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The Tensor Gradient of a Tensor. The generalization to arbitrary tensors (e.g., T µ⌫
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) is not hard:
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The general rule is that the tensor gradient of a tensor is the sum of its ordinary gradient + plus a positive
Christo↵el symbol (times the tensor) for each upper index (summing over that index and the second lower
Christo↵el symbol index) and a negative Christo↵el symbol term (times the tensor) for each lower index
(summing over that index and the upper Christo↵el symbol index.

Calculating Christo↵el Symbols. We will assume in what follows that the Christo↵el symbols are
symmetric in their lower indices (which amounts to assuming that spacetime is free of “torsion”1):
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Given this assumption, one can calculate Christo↵el symbols in terms of the metric tensor as follows (the
proof is one of your homework problems):
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This is easier to remember than one might think. A factor of the inverse metric generates the Christo↵el
symbol’s superscript index. The final negative term has the symbol’s lower indices as the indices of the
metric, and one generates the two positive terms by rotating the last term’s indices either right or left.

2.4.1 Exercise: The Tensor Gradient in Parabolic Coordinates.

Consider the parabolic coordinate system described in the previous exercise, where p(x, y) = x and q(x, y) =
y� cx2. Consider a truly constant vector field in Cartesian coordinates defined so that Hx = 1 and Hy = 0.

(a) Find the components of H in the p, q coordinate system.

(b) In the previous exercise, we found the metric tensor for p, q coordinates to be
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Verify (by matrix multiplication) that the inverse metric is given by
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(c) The Christo↵el symbols for p, q coordinates are
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(This makes sense, because we can see from Figure 2 that only the e
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.

(d) Calculate all four components of r
µ

H⌫ in p, q coordinates. Are the results what you expect?
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The Geodesic Equation

2.5 The Geodesic Equation.

The four-velocity u = ds/d⌧ at every event along a particle’s worldline is a vector parallel to the di↵erential
displacement ds that the particle moves during a di↵erential proper time d⌧ (as measured by a clock traveling
with the particle). The four-velocity is therefore always tangent to the particle’s worldline. Now a geodesic
is by definition “the straightest possible” path at every point. A mathematical way to define such a path is
to say that at all events along the particle’s worldline, the particle’s four-velocity is constant: du/d⌧ = 0.

In a curved space or spacetime, what we mean by this is that the vector u does not change direction
during an infinitesimal step of proper time d⌧ , as we would determine in a cartesian coordinate system set
up in a patch of area around the particle that is small enough to be considered locally flat. For example, we
might map a great circle on the earth’s surface by laying out a cartesian coordinate system on a city-sized
patch, draw a straight line in that coordinate system a couple of miles long, then set up a new coordinate
system centered at the endpoint, draw a new straight line segment, and repeat.

In an arbitrary coordinate system in a curved or flat space or spacetime, we can calculate this path
mathematically as follows:
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Now, e
µ

depends on ⌧ because the particle’s position in spacetime depends on ⌧ and e
µ

depends on position.
So using the chain rule and substituting uµ ⌘ dxµ/d⌧ into the above, we find that
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where in going to the last step on the first line, I renamed the bound µ, ⌫,↵ indices in the last term to ↵,�, µ,
respectively. The last line follows because a vector will only be zero if each of its components are zero. The
last equation is the geodesic equation: it represents four second-order di↵erential equations that one can
solve to yield the equations xµ(⌧) that parametrically describe a geodesic in an arbitrary coordinate system
in an arbitrary curved or flat space or spacetime. Note that in flat spacetime, where the metric g

µ⌫

= ⌘
µ⌫

=
constant, all the Christo↵el symbols (which involve derivatives of the metric) are zero, and the geodesic
equation yields dxµ/d⌧2 = 0, whose solutions are straight worldlines, as we would expect.

The geodesic equation is one of the two core equations of general relativity. It expresses the first clause
of Wheeler’s aphorism: “Spacetime tells matter how to move.” If we know the metric of spacetime in any
coordinate system, we can use this equation to calculate the worldlines of free particles in that spacetime.

2.5.1 Exercise: Geodesics in Parabolic Coordinates.

Consider the parabolic coordinate system for two-dimensional flat space described in the previous two exer-
cises, where p(x, y) = x and q(x, y) = y � cx2. In a two dimensional space like this, we parameterize paths
using the arclength s along the path instead of the proper time, so the geodesic equation becomes
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(2.32)

and we look for solutions of the form xµ(s). We found in the last exercise that the Christo↵el symbols for
this coordinate system all zero except for � q

pp

= 2c.

(a) Find the p and q components of the geodesic equation.

(b) The solution to the p-component equation is easy: p = as, where a is a constant of integration, if we
define s to be zero where p is zero. Use this to show that the solution to the q-component equation is
q = �ca2s2 + bs+ q

0

, where b and q
0

are constants of integration.

(c) The transformations back to cartesian coordinates are x(p, q) = p and y(p, q) = cp2 + q. Use these
transformations to convert the solutions for p(s) and q(s) to solutions for x(s) and y(s). Argue that
the resulting solutions are straight lines (Hint: Express y as a function of x.)
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where in going to the last step on the first line, I renamed the bound µ, ⌫,↵ indices in the last term to ↵,�, µ,
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where in going to the last step on the first line, I renamed the bound µ, ⌫,↵ indices in the last term to ↵,�, µ,
respectively. The last line follows because a vector will only be zero if each of its components are zero. The
last equation is the geodesic equation: it represents four second-order di↵erential equations that one can
solve to yield the equations xµ(⌧) that parametrically describe a geodesic in an arbitrary coordinate system
in an arbitrary curved or flat space or spacetime. Note that in flat spacetime, where the metric g
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constant, all the Christo↵el symbols (which involve derivatives of the metric) are zero, and the geodesic
equation yields dxµ/d⌧2 = 0, whose solutions are straight worldlines, as we would expect.
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and we look for solutions of the form xµ(s). We found in the last exercise that the Christo↵el symbols for
this coordinate system all zero except for � q

pp

= 2c.

(a) Find the p and q components of the geodesic equation.

(b) The solution to the p-component equation is easy: p = as, where a is a constant of integration, if we
define s to be zero where p is zero. Use this to show that the solution to the q-component equation is
q = �ca2s2 + bs+ q

0

, where b and q
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are constants of integration.

(c) The transformations back to cartesian coordinates are x(p, q) = p and y(p, q) = cp2 + q. Use these
transformations to convert the solutions for p(s) and q(s) to solutions for x(s) and y(s). Argue that
the resulting solutions are straight lines (Hint: Express y as a function of x.)
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where in going to the last step on the first line, I renamed the bound µ, ⌫,↵ indices in the last term to ↵,�, µ,
respectively. The last line follows because a vector will only be zero if each of its components are zero. The
last equation is the geodesic equation: it represents four second-order di↵erential equations that one can
solve to yield the equations xµ(⌧) that parametrically describe a geodesic in an arbitrary coordinate system
in an arbitrary curved or flat space or spacetime. Note that in flat spacetime, where the metric g
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=
constant, all the Christo↵el symbols (which involve derivatives of the metric) are zero, and the geodesic
equation yields dxµ/d⌧2 = 0, whose solutions are straight worldlines, as we would expect.

The geodesic equation is one of the two core equations of general relativity. It expresses the first clause
of Wheeler’s aphorism: “Spacetime tells matter how to move.” If we know the metric of spacetime in any
coordinate system, we can use this equation to calculate the worldlines of free particles in that spacetime.
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= 2c.

(a) Find the p and q components of the geodesic equation.

(b) The solution to the p-component equation is easy: p = as, where a is a constant of integration, if we
define s to be zero where p is zero. Use this to show that the solution to the q-component equation is
q = �ca2s2 + bs+ q

0

, where b and q
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are constants of integration.

(c) The transformations back to cartesian coordinates are x(p, q) = p and y(p, q) = cp2 + q. Use these
transformations to convert the solutions for p(s) and q(s) to solutions for x(s) and y(s). Argue that
the resulting solutions are straight lines (Hint: Express y as a function of x.)
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where in going to the last step on the first line, I renamed the bound µ, ⌫,↵ indices in the last term to ↵,�, µ,
respectively. The last line follows because a vector will only be zero if each of its components are zero. The
last equation is the geodesic equation: it represents four second-order di↵erential equations that one can
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(a) Find the p and q components of the geodesic equation.

(b) The solution to the p-component equation is easy: p = as, where a is a constant of integration, if we
define s to be zero where p is zero. Use this to show that the solution to the q-component equation is
q = �ca2s2 + bs+ q

0

, where b and q
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are constants of integration.

(c) The transformations back to cartesian coordinates are x(p, q) = p and y(p, q) = cp2 + q. Use these
transformations to convert the solutions for p(s) and q(s) to solutions for x(s) and y(s). Argue that
the resulting solutions are straight lines (Hint: Express y as a function of x.)
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The Schwarzschild metric2.6 Schwarzschild Geodesics.

As we will see in a subsequent lecture, one can solve the Einstein equation in the vacuum around a spherical
star to get the Schwarzschild metric:

ds2 = �
✓
1� 2GM

r

◆
dt2 +

dr2

1� 2GM/r
+ r2d✓2 + r2 sin2 ✓ d�2 (2.33)

(meaning that g
tt

= �(1� 2GM/r), g
rr

= (1� 2GM/r)�1, g
✓✓

= r2 and g
��

= r2 sin2 ✓ and the o↵-diagonal
metric components are zero). This is by no means the only solution even for the vacuum spacetime around
a spherical star, since we can redefine coordinates in completely arbitrary ways and so generate an infinite
number coordinate systems that describe the same physical reality. But this coordinate system does have
some advantages: it is independent of the time coordinate t (in a diagonal metric, the time coordinate is the
coordinate whose metric component is negative) and this metric reduces to the metric for flat spacetime (in
a spherical coordinate-basis) as r ! 1. I should note that though I am using units where time and space
are both measured in meters (so that c = 1), I am not using units where the universal gravitational constant
G = 1 as well, as is often done. I am doing this so that connections to Newtonian mechanics will be clearer.
But it is good to keep in mind that in this unit system GM has units of meters, and in fact GM = 1477 m
for a star with the mass of the sun (and is 4.45 mm for the Earth).

It is not my purpose here to discuss the many fascinating features of this metric: it looks like others
may talk about that, and the topic is somewhat tangential to the main line of my argument. But I want to
introduce this metric so that we can explore the implications of the geodesic equation in a realistic situation
(one that even applies to our daily lives!).

Calculating the Christo↵el symbols in this case is simply an example of applying equation 2.26 repeatedly
until you have evaluated all 40 that might be independent. There are various labor-saving ways to do this
(including using computer tools), but a straightforward and low-tech way to do this is to use something
that I call the Diagonal Metric Worksheet. This worksheet assumes a diagonal metric of the form
ds2 = �Ax0 +Bx1 +Cx2 +Dx3 (where the numbers are placeholders for coordinate names, not exponents)
and that the metric components A,B,C,D can depend on any or all of the coordinates. The worksheet then
simply lists all of the Christo↵el symbols in terms of the metric components and their derivatives (the latter
written in a shorthand form where A

0

⌘ @A/@x0 and so on. On a copy of the worksheet, one merely writes
above each term what the Christo↵el symbol evaluates to for whatever the functions for A,B,C,D actually
are in a given particular circumstance.

In the Schwarzschild case, we identify x0 = t, x1 = r, x2 = ✓, x3 = �, and A = 1 � 2GM/r,B =
(1 � 2GM/r)�1, C = r2, and D = r2 sin2 ✓. First note that no metric component depends on t or �, and
only D depends on ✓, so a lot of the derivative terms that might appear in general will be zero. So we look
on the Diagonal Metric Worksheet, and see, for example that � 0

00

= � t

tt

= 1

2A

A
0

= 0, because A does not
depend on x0 = t. The next listing on the worksheet tells us that

� 0
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= � 0
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2(1� 2GM/r)
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@r
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1� 2GM

r

◆
=

GM

r2(1� 2GM/r)
(2.34)

and the remaining entries on that line are zero because A does not depend on ✓ or �. One can go through the
worksheet in a similar way to show that the complete set of nonzero Christo↵el symbols for the Schwarzschild
coordinate system are (in addition to the pair evaluated above):

� r

tt

= � r

tt

=
GM

r2

✓
1� 2GM

r

◆
, � r

rr
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,
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= �(r � 2GM), � r

��

= �(r � 2GM) sin2 ✓ (2.35)

� ✓

r✓
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1

r
, � ✓

��

= � cos ✓ sin ✓ (2.36)

��

r�

= ��

�r

=
1

r
, ��

✓�

= ��

�✓

� cot ✓ (2.37)

As an application of the geodesic equation, first consider a particle at least momentarily rest at some
radial coordinate r. The spatial components of such a particle’s four-velocity u are zero by definition
(dr/d⌧ = d✓/d⌧ = d�/d⌧ = 0), but in an arbitrary coordinate system we cannot conclude that the four-
velocity’s time component ut = dt/d⌧ , as we could in special relativity. Rather, we must go back to the basic
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ds2 = �
✓
1� 2GM

r

◆
dt2 +

dr2

1� 2GM/r
+ r2d✓2 + r2 sin2 ✓ d�2 (2.33)

(meaning that g
tt

= �(1� 2GM/r), g
rr

= (1� 2GM/r)�1, g
✓✓

= r2 and g
��

= r2 sin2 ✓ and the o↵-diagonal
metric components are zero). This is by no means the only solution even for the vacuum spacetime around
a spherical star, since we can redefine coordinates in completely arbitrary ways and so generate an infinite
number coordinate systems that describe the same physical reality. But this coordinate system does have
some advantages: it is independent of the time coordinate t (in a diagonal metric, the time coordinate is the
coordinate whose metric component is negative) and this metric reduces to the metric for flat spacetime (in
a spherical coordinate-basis) as r ! 1. I should note that though I am using units where time and space
are both measured in meters (so that c = 1), I am not using units where the universal gravitational constant
G = 1 as well, as is often done. I am doing this so that connections to Newtonian mechanics will be clearer.
But it is good to keep in mind that in this unit system GM has units of meters, and in fact GM = 1477 m
for a star with the mass of the sun (and is 4.45 mm for the Earth).

It is not my purpose here to discuss the many fascinating features of this metric: it looks like others
may talk about that, and the topic is somewhat tangential to the main line of my argument. But I want to
introduce this metric so that we can explore the implications of the geodesic equation in a realistic situation
(one that even applies to our daily lives!).

Calculating the Christo↵el symbols in this case is simply an example of applying equation 2.26 repeatedly
until you have evaluated all 40 that might be independent. There are various labor-saving ways to do this
(including using computer tools), but a straightforward and low-tech way to do this is to use something
that I call the Diagonal Metric Worksheet. This worksheet assumes a diagonal metric of the form
ds2 = �Ax0 +Bx1 +Cx2 +Dx3 (where the numbers are placeholders for coordinate names, not exponents)
and that the metric components A,B,C,D can depend on any or all of the coordinates. The worksheet then
simply lists all of the Christo↵el symbols in terms of the metric components and their derivatives (the latter
written in a shorthand form where A

0

⌘ @A/@x0 and so on. On a copy of the worksheet, one merely writes
above each term what the Christo↵el symbol evaluates to for whatever the functions for A,B,C,D actually
are in a given particular circumstance.

In the Schwarzschild case, we identify x0 = t, x1 = r, x2 = ✓, x3 = �, and A = 1 � 2GM/r,B =
(1 � 2GM/r)�1, C = r2, and D = r2 sin2 ✓. First note that no metric component depends on t or �, and
only D depends on ✓, so a lot of the derivative terms that might appear in general will be zero. So we look
on the Diagonal Metric Worksheet, and see, for example that � 0

00

= � t

tt

= 1

2A

A
0

= 0, because A does not
depend on x0 = t. The next listing on the worksheet tells us that

� 0

01

= � 0

10

= 1

2A

A
1

) � t

tr

= � t

rt

=
1

2(1� 2GM/r)

@

@r

✓
1� 2GM

r

◆
=

GM

r2(1� 2GM/r)
(2.34)

and the remaining entries on that line are zero because A does not depend on ✓ or �. One can go through the
worksheet in a similar way to show that the complete set of nonzero Christo↵el symbols for the Schwarzschild
coordinate system are (in addition to the pair evaluated above):

� r

tt

= � r

tt

=
GM

r2

✓
1� 2GM

r

◆
, � r

rr

=
�GM

r2(1� 2GM/r)
,

� r

✓✓

= �(r � 2GM), � r

��

= �(r � 2GM) sin2 ✓ (2.35)

� ✓

r✓

= � ✓

✓r

=
1

r
, � ✓

��

= � cos ✓ sin ✓ (2.36)

��

r�

= ��

�r

=
1

r
, ��

✓�

= ��

�✓

� cot ✓ (2.37)

As an application of the geodesic equation, first consider a particle at least momentarily rest at some
radial coordinate r. The spatial components of such a particle’s four-velocity u are zero by definition
(dr/d⌧ = d✓/d⌧ = d�/d⌧ = 0), but in an arbitrary coordinate system we cannot conclude that the four-
velocity’s time component ut = dt/d⌧ , as we could in special relativity. Rather, we must go back to the basic
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meaning that

and other metric components are zero.



Example: 
four-velocity of a particle at rest
Remember the magnitude of a four-vector is –1:result for the magnitude of the four-velocity, which (by definition of the di↵erential proper time) still says:

u ⇧ u ⌘ uµg
µ⌫

u⌫ =
dxµ

d⌧
g
µ⌫

dx⌫

d⌧
=

g
µ⌫

dxµdx⌫

d⌧2
=

ds2

d⌧2
=

�d⌧2

d⌧2
= �1 (2.38)

For a particle at rest, this equation reduces to

�1 = uµg
µ⌫

u⌫ = g
tt

(ut)2 + 0 + 0 + 0 ) ut =
dt

d⌧
=

r
1

�g
tt

=
1p

1� 2GM/r
(2.39)

This equation says that a clock attached to a particle at rest registers a proper time between events along
its worldline that is somewhat smaller than the Schwarzschild coordinate time t between those events. This
one consequence of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a
“time coordinate,” is not the time that just any clock at any location would read, but rather a kind of global
bookkeeper’s time stamp. It only coincides with the time that a clock would directly read if the clock is at
rest at infinity.

The r-component of the geodesic equation in this situation says that the particle’s radial coordinate
proper acceleration is given by

d2r

d⌧2
= �� r

µ⌫

dxµ

d⌧

dx⌫

d⌧
= �� r

tt

utut + zeros = �GM

r2

✓
1� 2GM

r

◆
1

1� 2GM/r
= �2GM

r2
(2.40)

This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
because radial distance a particle moves between two events as it falls radially is not quite the same as the
di↵erence dr in the radial coordinate r. In fact, according to the metric, the spatial distance between two
events that occur at the same time but at points with a purely radial coordinate separation of dr is

ds =
p
ds2 =

p
g
µ⌫

dxµdx⌫ =
p
g
rr

dr2 + zeros =
drp

1� 2GM/r
(2.41)

However, as long as r > 2GM , this distinction is not important. For example, at the surface of the earth,
where r = 6380 km and 2GM ⇡ 0.9 cm, we’d have to keep track better than 8 decimal places in our
measurements to notice that the Newtonian result for falling objects is not correct.

Still, there is an important lesson here that I am going to repeat over and over in the days to come.
Coordinates by themselves have no physical meaning. Calling coordinates t, r, ✓,� may cause you to
think that you know what they mean, but we could have called these coordinates anything. The only thing

that gives coordinates physical meaning is the metric, which is what anchors human coordinates to
physical reality. One must always resort to the metric to learn what your coordinates actually mean.

This is a tricky idea, because we are so used to working with coordinates in flat spacetime (for example,
spherical coordinates with an orthonormal basis) that have a reasonably direct intuitive meaning. But in
general relativity, we have to give this up and use the metric exclusively to learn about what coordinates
mean. But if you find this hard to grasp or remember, be comforted. Even Einstein struggled with this in
the months leading up to his final November 1915 paper describing the Einstein equation. 2

Now let’s consider a particle in orbit around an object whose exterior geometry is described by the
Schwarzschild metric. Since the star and its surrounding spacetime are spherically symmetric, we can take
any plane through the star’s center to be the equatorial (✓ = ⇡/2) plane, and if the particle’s initial velocity
lies in that plane then it must stay on that plane by symmetry. So without loss of generality, we can consider
only orbits in the equatorial plane, where sin2✓ = 1 and d✓/d⌧ = 0. Now, note under these circumstances
that the � component of the geodesic equation implies that

0 =
d2�

d⌧2
+ ��

µ⌫

dxµ

d⌧

dx⌫

d⌧
=

d2�

d⌧2
+ 2��

r�

dr

d⌧

d�

d⌧
+ 2��

✓�

d✓

d⌧

d�

d⌧
(2.42)

since only these Christo↵el symbols with � in the upper position are nonzero. But the last term is zero
because d✓/d⌧ = 0, and substituting in the value of the remaining Christo↵el symbol yields

0 =
d2�

d⌧2
+

2

r

dr

d⌧

d�

d⌧
=

1

r2
d

d⌧

✓
r2

d�

d⌧

◆
) r2

d�

d⌧
= constant ⌘ ` (2.43)
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result for the magnitude of the four-velocity, which (by definition of the di↵erential proper time) still says:

u ⇧ u ⌘ uµg
µ⌫

u⌫ =
dxµ

d⌧
g
µ⌫

dx⌫

d⌧
=

g
µ⌫

dxµdx⌫

d⌧2
=

ds2

d⌧2
=

�d⌧2

d⌧2
= �1 (2.38)

For a particle at rest, this equation reduces to

�1 = uµg
µ⌫

u⌫ = g
tt

(ut)2 + 0 + 0 + 0 ) ut =
dt

d⌧
=

r
1

�g
tt

=
1p

1� 2GM/r
(2.39)

This equation says that a clock attached to a particle at rest registers a proper time between events along
its worldline that is somewhat smaller than the Schwarzschild coordinate time t between those events. This
one consequence of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a
“time coordinate,” is not the time that just any clock at any location would read, but rather a kind of global
bookkeeper’s time stamp. It only coincides with the time that a clock would directly read if the clock is at
rest at infinity.

The r-component of the geodesic equation in this situation says that the particle’s radial coordinate
proper acceleration is given by

d2r

d⌧2
= �� r

µ⌫

dxµ

d⌧

dx⌫

d⌧
= �� r

tt

utut + zeros = �GM

r2

✓
1� 2GM

r

◆
1

1� 2GM/r
= �2GM

r2
(2.40)

This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
because radial distance a particle moves between two events as it falls radially is not quite the same as the
di↵erence dr in the radial coordinate r. In fact, according to the metric, the spatial distance between two
events that occur at the same time but at points with a purely radial coordinate separation of dr is

ds =
p
ds2 =

p
g
µ⌫

dxµdx⌫ =
p
g
rr

dr2 + zeros =
drp

1� 2GM/r
(2.41)

However, as long as r > 2GM , this distinction is not important. For example, at the surface of the earth,
where r = 6380 km and 2GM ⇡ 0.9 cm, we’d have to keep track better than 8 decimal places in our
measurements to notice that the Newtonian result for falling objects is not correct.

Still, there is an important lesson here that I am going to repeat over and over in the days to come.
Coordinates by themselves have no physical meaning. Calling coordinates t, r, ✓,� may cause you to
think that you know what they mean, but we could have called these coordinates anything. The only thing

that gives coordinates physical meaning is the metric, which is what anchors human coordinates to
physical reality. One must always resort to the metric to learn what your coordinates actually mean.

This is a tricky idea, because we are so used to working with coordinates in flat spacetime (for example,
spherical coordinates with an orthonormal basis) that have a reasonably direct intuitive meaning. But in
general relativity, we have to give this up and use the metric exclusively to learn about what coordinates
mean. But if you find this hard to grasp or remember, be comforted. Even Einstein struggled with this in
the months leading up to his final November 1915 paper describing the Einstein equation. 2

Now let’s consider a particle in orbit around an object whose exterior geometry is described by the
Schwarzschild metric. Since the star and its surrounding spacetime are spherically symmetric, we can take
any plane through the star’s center to be the equatorial (✓ = ⇡/2) plane, and if the particle’s initial velocity
lies in that plane then it must stay on that plane by symmetry. So without loss of generality, we can consider
only orbits in the equatorial plane, where sin2✓ = 1 and d✓/d⌧ = 0. Now, note under these circumstances
that the � component of the geodesic equation implies that

0 =
d2�

d⌧2
+ ��

µ⌫

dxµ

d⌧

dx⌫

d⌧
=

d2�

d⌧2
+ 2��

r�

dr

d⌧

d�

d⌧
+ 2��

✓�

d✓

d⌧

d�

d⌧
(2.42)

since only these Christo↵el symbols with � in the upper position are nonzero. But the last term is zero
because d✓/d⌧ = 0, and substituting in the value of the remaining Christo↵el symbol yields

0 =
d2�

d⌧2
+

2

r

dr

d⌧

d�

d⌧
=

1

r2
d

d⌧

✓
r2

d�

d⌧

◆
) r2

d�

d⌧
= constant ⌘ ` (2.43)
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This allows us to find ut for a particle at rest:

result for the magnitude of the four-velocity, which (by definition of the di↵erential proper time) still says:

u ⇧ u ⌘ uµg
µ⌫

u⌫ =
dxµ

d⌧
g
µ⌫

dx⌫

d⌧
=

g
µ⌫

dxµdx⌫

d⌧2
=

ds2

d⌧2
=

�d⌧2

d⌧2
= �1 (2.38)

For a particle at rest, this equation reduces to

�1 = uµg
µ⌫

u⌫ = g
tt

(ut)2 + 0 + 0 + 0 ) ut =
dt

d⌧
=

r
1

�g
tt

=
1p

1� 2GM/r
(2.39)

This equation says that a clock attached to a particle at rest registers a proper time between events along
its worldline that is somewhat smaller than the Schwarzschild coordinate time t between those events. This
one consequence of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a
“time coordinate,” is not the time that just any clock at any location would read, but rather a kind of global
bookkeeper’s time stamp. It only coincides with the time that a clock would directly read if the clock is at
rest at infinity.

The r-component of the geodesic equation in this situation says that the particle’s radial coordinate
proper acceleration is given by

d2r

d⌧2
= �� r

µ⌫

dxµ

d⌧

dx⌫

d⌧
= �� r

tt

utut + zeros = �GM

r2

✓
1� 2GM

r

◆
1

1� 2GM/r
= �2GM

r2
(2.40)

This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
because radial distance a particle moves between two events as it falls radially is not quite the same as the
di↵erence dr in the radial coordinate r. In fact, according to the metric, the spatial distance between two
events that occur at the same time but at points with a purely radial coordinate separation of dr is

ds =
p
ds2 =

p
g
µ⌫

dxµdx⌫ =
p
g
rr

dr2 + zeros =
drp

1� 2GM/r
(2.41)

However, as long as r > 2GM , this distinction is not important. For example, at the surface of the earth,
where r = 6380 km and 2GM ⇡ 0.9 cm, we’d have to keep track better than 8 decimal places in our
measurements to notice that the Newtonian result for falling objects is not correct.

Still, there is an important lesson here that I am going to repeat over and over in the days to come.
Coordinates by themselves have no physical meaning. Calling coordinates t, r, ✓,� may cause you to
think that you know what they mean, but we could have called these coordinates anything. The only thing

that gives coordinates physical meaning is the metric, which is what anchors human coordinates to
physical reality. One must always resort to the metric to learn what your coordinates actually mean.

This is a tricky idea, because we are so used to working with coordinates in flat spacetime (for example,
spherical coordinates with an orthonormal basis) that have a reasonably direct intuitive meaning. But in
general relativity, we have to give this up and use the metric exclusively to learn about what coordinates
mean. But if you find this hard to grasp or remember, be comforted. Even Einstein struggled with this in
the months leading up to his final November 1915 paper describing the Einstein equation. 2

Now let’s consider a particle in orbit around an object whose exterior geometry is described by the
Schwarzschild metric. Since the star and its surrounding spacetime are spherically symmetric, we can take
any plane through the star’s center to be the equatorial (✓ = ⇡/2) plane, and if the particle’s initial velocity
lies in that plane then it must stay on that plane by symmetry. So without loss of generality, we can consider
only orbits in the equatorial plane, where sin2✓ = 1 and d✓/d⌧ = 0. Now, note under these circumstances
that the � component of the geodesic equation implies that

0 =
d2�

d⌧2
+ ��

µ⌫

dxµ

d⌧

dx⌫

d⌧
=

d2�

d⌧2
+ 2��

r�

dr

d⌧

d�

d⌧
+ 2��

✓�

d✓

d⌧

d�

d⌧
(2.42)

since only these Christo↵el symbols with � in the upper position are nonzero. But the last term is zero
because d✓/d⌧ = 0, and substituting in the value of the remaining Christo↵el symbol yields

0 =
d2�

d⌧2
+

2

r

dr

d⌧

d�

d⌧
=

1

r2
d

d⌧

✓
r2

d�

d⌧

◆
) r2

d�

d⌧
= constant ⌘ ` (2.43)
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Example: 
geodesic for a particle initially at rest
So the r-component of the geodesic equation is:

result for the magnitude of the four-velocity, which (by definition of the di↵erential proper time) still says:

u ⇧ u ⌘ uµg
µ⌫

u⌫ =
dxµ

d⌧
g
µ⌫

dx⌫

d⌧
=

g
µ⌫

dxµdx⌫

d⌧2
=

ds2

d⌧2
=

�d⌧2

d⌧2
= �1 (2.38)

For a particle at rest, this equation reduces to

�1 = uµg
µ⌫

u⌫ = g
tt

(ut)2 + 0 + 0 + 0 ) ut =
dt

d⌧
=

r
1

�g
tt

=
1p

1� 2GM/r
(2.39)

This equation says that a clock attached to a particle at rest registers a proper time between events along
its worldline that is somewhat smaller than the Schwarzschild coordinate time t between those events. This
one consequence of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a
“time coordinate,” is not the time that just any clock at any location would read, but rather a kind of global
bookkeeper’s time stamp. It only coincides with the time that a clock would directly read if the clock is at
rest at infinity.

The r-component of the geodesic equation in this situation says that the particle’s radial coordinate
proper acceleration is given by

d2r

d⌧2
= �� r

µ⌫

dxµ

d⌧

dx⌫

d⌧
= �� r

tt

utut + zeros = �GM

r2

✓
1� 2GM

r

◆
1

1� 2GM/r
= �2GM

r2
(2.40)

This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
because radial distance a particle moves between two events as it falls radially is not quite the same as the
di↵erence dr in the radial coordinate r. In fact, according to the metric, the spatial distance between two
events that occur at the same time but at points with a purely radial coordinate separation of dr is

ds =
p
ds2 =

p
g
µ⌫

dxµdx⌫ =
p
g
rr

dr2 + zeros =
drp

1� 2GM/r
(2.41)

However, as long as r > 2GM , this distinction is not important. For example, at the surface of the earth,
where r = 6380 km and 2GM ⇡ 0.9 cm, we’d have to keep track better than 8 decimal places in our
measurements to notice that the Newtonian result for falling objects is not correct.

Still, there is an important lesson here that I am going to repeat over and over in the days to come.
Coordinates by themselves have no physical meaning. Calling coordinates t, r, ✓,� may cause you to
think that you know what they mean, but we could have called these coordinates anything. The only thing

that gives coordinates physical meaning is the metric, which is what anchors human coordinates to
physical reality. One must always resort to the metric to learn what your coordinates actually mean.

This is a tricky idea, because we are so used to working with coordinates in flat spacetime (for example,
spherical coordinates with an orthonormal basis) that have a reasonably direct intuitive meaning. But in
general relativity, we have to give this up and use the metric exclusively to learn about what coordinates
mean. But if you find this hard to grasp or remember, be comforted. Even Einstein struggled with this in
the months leading up to his final November 1915 paper describing the Einstein equation. 2

Now let’s consider a particle in orbit around an object whose exterior geometry is described by the
Schwarzschild metric. Since the star and its surrounding spacetime are spherically symmetric, we can take
any plane through the star’s center to be the equatorial (✓ = ⇡/2) plane, and if the particle’s initial velocity
lies in that plane then it must stay on that plane by symmetry. So without loss of generality, we can consider
only orbits in the equatorial plane, where sin2✓ = 1 and d✓/d⌧ = 0. Now, note under these circumstances
that the � component of the geodesic equation implies that

0 =
d2�

d⌧2
+ ��

µ⌫

dxµ

d⌧

dx⌫

d⌧
=

d2�

d⌧2
+ 2��

r�

dr

d⌧

d�

d⌧
+ 2��

✓�

d✓

d⌧

d�

d⌧
(2.42)

since only these Christo↵el symbols with � in the upper position are nonzero. But the last term is zero
because d✓/d⌧ = 0, and substituting in the value of the remaining Christo↵el symbol yields

0 =
d2�

d⌧2
+

2

r

dr

d⌧

d�

d⌧
=

1

r2
d

d⌧

✓
r2

d�

d⌧

◆
) r2

d�

d⌧
= constant ⌘ ` (2.43)
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2.6 Schwarzschild Geodesics.

As we will see in a subsequent lecture, one can solve the Einstein equation in the vacuum around a spherical
star to get the Schwarzschild metric:

ds2 = �
✓
1� 2GM

r

◆
dt2 +

dr2

1� 2GM/r
+ r2d✓2 + r2 sin2 ✓ d�2 (2.36)

(meaning that g
tt

= �(1� 2GM/r), g
rr

= (1� 2GM/r)�1, g
✓✓

= r2 and g
��

= r2 sin2 ✓ and the o↵-diagonal
metric components are zero). This is by no means the only solution even for the vacuum spacetime around
a spherical star, since we can redefine coordinates in completely arbitrary ways and so generate an infinite
number coordinate systems that describe the same physical reality. But this coordinate system does have
some advantages: it is independent of the time coordinate t (in a diagonal metric, the time coordinate is the
coordinate whose metric component is negative) and this metric reduces to the metric for flat spacetime (in
a spherical coordinate-basis) as r ! 1. I should note that though I am using units where time and space
are both measured in meters (so that c = 1), I am not using units where the universal gravitational constant
G = 1 as well, as is often done. I am doing this so that connections to Newtonian mechanics will be clearer.
But it is good to keep in mind that in this unit system GM has units of meters, and in fact GM = 1477 m
for a star with the mass of the sun (and is 4.45 mm for the Earth).

It is not my purpose here to discuss the many fascinating features of this metric: it looks like others
may talk about that, and the topic is somewhat tangential to the main line of my argument. But I want to
introduce this metric so that we can explore the implications of the geodesic equation in a realistic situation
(one that even applies to our daily lives!).

Consider a particle at least momentarily rest at some radial coordinate r. The spatial components of
such a particle’s four-velocity u are zero by definition (dr/d⌧ = d✓/d⌧ = d�/d⌧ = 0), but in an arbitrary
coordinate system we cannot conclude that the four-velocity’s time component ut = dt/d⌧ , as we could in
special relativity. Rather, we must go back to the basic result for the magnitude of the four-velocity, which
(by definition of the di↵erential proper time) still says:

u ⇧ u ⌘ uµg
µ⌫

u⌫ =
dxµ

d⌧
g
µ⌫

dx⌫

d⌧
=

g
µ⌫

dxµdx⌫

d⌧2
=

ds2

d⌧2
=

�d⌧2

d⌧2
= �1 (2.37)

For a particle at rest, this equation reduces to

�1 = uµg
µ⌫

u⌫ = g
tt

(ut)2 + 0 + 0 + 0 ) ut =
dt

d⌧
=

r
1

�g
tt

=
1p

1� 2GM/r
(2.38)

This equation says that a clock attached to a particle at rest registers a proper time between events along its
worldline that is smaller than the Schwarzschild coordinate time t between those events. This one consequence
of the curvature of spacetime in the Schwarzschild geometry. We see that t, though it is a “time coordinate,”
is not the time that just any clock at any finite r would read, but rather a kind of global bookkeeper’s time
stamp. It only coincides with the time that a clock would directly read if the clock is at rest at infinity.
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Substituting this into the geodesic equation yields
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This seems say us that the radial acceleration of a particle initially at rest (according to the particle’s own
clock time) is exactly what we would expect from Newtonian mechanics. However, this is a bit misleading,
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Exercise
It turns out one solution to the full geodesic equation for a 
radially falling particle is dr/dτ = −               . At what value of r is 
the particle at rest? At what value of r is dr/dτ = 1? Does that 
necessarily mean that it is traveling at the speed of light? 

2GM/r



Local Flatness Theorem

2.7 Locally Orthonormal and Locally Inertial Frames.

The problem with restricting ourselves to coordinate bases is that the kinds of coordinate systems that we
use every day in the laboratory employ orthonormal basis vectors. If we want to know what a particle’s
energy or velocity or some other physical quantity would be “according to (some specified) observer,” we are
implicitly assuming that the observer is doing his or her measurements or calculations using a frame having
a standard orthonormal basis. The purpose of this section is to explore a method for transforming physical
quantities from their values determined in a large-scale coordinate-basis coordinate system like Schwarzschild
coordinates and a local reference frame that uses an orthonormal basis.

The local flatness theorem is important in this context (and will be important to us later as well). A
statement of the theorem follows.

At any given event P in spacetime, our freedom to choose coordinates allows us to construct a
coordinate system where (1) g

µ⌫

(P) = ⌘
µ⌫

(with six degrees of freedom left over that correspond
to arbitrary rotations and Lorentz boosts), (2) all 40 of the independent values of @

↵

g
µ⌫

|P = 0,
and (3) all but 20 of the 100 independent values of @

↵

@
�

g
µ⌫

|P equal to zero.

The proof of this theorem is too involved to go into here: if you are interested, look at pp. 207-209 in
my textbook.3 But the result is very important. It tells us that at every event in spacetime, we can (in
principle) construct a reference frame that at least locally (if we don’t get too far from event P) behaves like
laboratories we are used to.

We call a reference frame where g
µ⌫

(P) = ⌘
µ⌫

a locally orthonormal frame (LOF), because ⌘
µ⌫

=
g
µ⌫

⌘ e
µ

⇧ e
⌫

means that the basis vectors for this coordinate system are orthogonal and have unit length,
at least at event P. If our coordinate system only satisfies this first criterion but not the second (meaning
that we don’t bother to set the first derivatives of the metric equal to zero), then at least some Christo↵el
symbols will not be zero, and geodesics will not be straight lines in our coordinate system. This would be
analogous to a laboratory coordinate system at rest on the surface of the Earth. We can definitely set up
such a coordinate system (we do it all the time), but geodesics (the worldlines of freely falling particles) are
not straight lines in such a coordinate system.

We call a LOF that also satisfies the second criterion (all the first derivatives of the metric are zero)
a locally inertial frame (LIF). In this frame, the Christo↵el symbols are all zero, and the worldlines of
geodesics are (locally) straight lines. Near the earth’s surface, such a frame would be a freely-falling frame,
such as the reference frame in a falling elevator or the International Space Station. In such a frame, we
would need to look at geodesics over fairly large distances (or for fairly long times) to see the tidal e↵ects
that distinguish a freely-falling frame from a globally inertial frame in deep space. But no matter how good
our coordinate system is, we will eventually see such e↵ects, because we cannot set all of the second metric
derivatives to zero (and thus first derivatives of the Christo↵el symbols) to zero. This means that as we
move far enough away from P in space and/or time, we will eventually see the geodesics begin to converge
or diverge as the Christo↵el symbols begin to become appreciably nonzero.

But how can we transform quantities expressed in Schwarzschild coordinates into values we would measure
in either a LOF or LIF? In principle, if we knew the coordinate transformation equations from Schwarzschild
coordinates to the new coordinates, then we could use the normal tensor transformation rule. But it is
usually very di�cult to derive those transformation equations.

Fortunately, there is another way. Consider for the sake of argument that we want to know the components
of a four-vector A in a certain LOF, and suppose we know the orthonormal basis vectors e

µ

of the LOF,
which we will take to be the primed frame. Since in any coordinate basis A = A⌫e 0

⌫

and g0
µ⌫

⌘ e 0
µ

⇧ e 0
⌫

, we
have

e 0
µ

⇧ A = e 0
µ

⇧ e 0
⌫

A0 ⌫ = g0
µ⌫

A0 ⌫ = A0
µ

(2.47)

In our particular LOF, g0
µ⌫

= ⌘
µ⌫

by definition, so we can say that

⌘↵µ(e0
µ

⇧ A) = ⌘↵µA0
µ

= A0 ↵ (2.48)

So, we can evaluate the components of the vector A in any LOF if we can evaluate the dot product of A
with the LOF’s basis vectors e 0

µ

.
The clever trick is that since the dot product must have a coordinate-independent value, we can evaluate

the dot product in whatever global coordinate system (such as the Schwarzschild coordinate system) that
describes our spacetime. All that we need to is to evaluate the Schwarzschild components of both the LOF’s
basis vectors e 0

µ

and the four-vector A of interest.
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Finding Components in a LOF
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Example: an observer at rest
in Schwarzschild spacetime
oT = uobs. We know from before that

Consider the following application. Suppose we have a particle that is falling from rest at infinity in
Schwarzschild spacetime, and we would like to know the particle’s ordinary velocity according to an ob-
server at rest at a given Schwarzschild coordinate r. In order to do this calculation, we must first find the
Schwarzschild coordinates of the observer’s LOF basis vectors, which we will call o

T

, o
x

, o
y

, and o
z

, corre-
sponding to the observer’s time T and spatial x, y, z coordinates, respectively. (Note that the observer’s time
coordinate T is not the Schwarzschild time coordinate t: this is why I am giving them di↵erent names. In
what follows, we will assume that AT , Ax, Ay, Az refer to the components of A evaluated in the LOF, and
At, Ar, A✓, A� to its components in the Schwarzschild system. This will avoid all the primes.)

We begin by noting that the observer’s four-velocity u
obs

is appropriately normalized for a time basis
vector (u

obs

⇧ u
obs

= �1). Also, the observer is not moving in his or her reference frame, so this vector points
purely in the observer’s time direction. Therefore, o

T

must be u
obs

. The Schwarzschild components of this
four-vector? These components are [ ut, ur, u✓, u� ]

obs

= [ dt/d⌧, dr/d⌧, d✓/d⌧, d�/d⌧ ]
obs

by definition. If
the observer is at rest relative to the Schwarzschild coordinates, then we know that dr = d✓ = d� = 0 )
ur

obs

= u✓

obs

= u�

obs

= 0. We can then compute ut

obs

using u
obs

⇧ u
obs

= �1:

�1 = g
µ⌫

uµ

obs

u⌫

obs

= g
tt

(ut

obs

)2 ) ut

obs

=
1p
�g

tt

=
1p

1� 2GM/r
(2.49)

We know that the Schwarzschild basis vectors are orthogonal at every point (because the Schwarzschild
metric is diagonal), so we can conveniently choose the observer’s spatial basis vectors to align with the
Schwarzchild basis vectors. Let’s choose o

z

parallel to the Schwarzschild +e
r

(that is, “upward”), o
x

parallel
to +e

�

, and o
y

to be parallel to �e
✓

(the minus sign is necessary to make the observer’s coordinate system
right-handed, as you can check with your fingers). This means that the only nonzero Schwarzschild compo-
nents of o

x

, o
y

and o
z

are their �, ✓, and r components, respectively. The only thing we then need to do is
ensure that the observer’s basis vectors normalized:
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and all other Schwarzschild components of the LOF basis vectors are zero.
Now consider the four-velocity of the falling particle. We saw in exercise 2.6.1 that we have e = 1 and

ur = dr/d⌧ = �
p

2GM/r, u✓ = d✓/d⌧ = 0 and u� = d�/d⌧ = 0 for this particle. Equation 2.44 says that
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dt
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=

1

1� 2GM/r
(2.51)

in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
So, to summarize, the Schwarzschild coordinates of all the vectors of interest are:
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T
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T
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T
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"
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1� 2GM/r
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#
(2.52a)
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x
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1
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�
(2.52b)
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�
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T
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p
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[ ut, ur, u✓, u� ] =


1

1� 2GM/r
, �2GM

r
, 0, 0

�
(2.52e)
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We can choose the spatial basis vectors to be normalized versions of the 
spatial Schwarzschild basis vectors. In particular:

would need to look at geodesics over fairly large distances (or for fairly long times) to see the tidal e↵ects
that distinguish a freely-falling frame from a globally inertial frame in deep space. But no matter how good
our coordinate system is, we will eventually see such e↵ects, because we cannot set all of the second metric
derivatives to zero (and thus first derivatives of the Christo↵el symbols) to zero. This means that as we
move far enough away from P in space and/or time, we will eventually see the geodesics begin to converge
or diverge as the Christo↵el symbols begin to become appreciably nonzero.

But how can we transform quantities expressed in Schwarzschild coordinates into values we would measure
in either a LOF or LIF? In principle, if we knew the coordinate transformation equations from Schwarzschild
coordinates to the new coordinates, then we could use the normal tensor transformation rule. But it is
usually very di�cult to derive those transformation equations.

Fortunately, there is another way. Suppose we want to know the components of a four-vector A in a
certain LOF, and suppose we know the orthonormal basis vectors e

µ

of the LOF, which we will take to be
the primed frame. Since in any coordinate basis A = A⌫e 0

⌫

and g0
µ⌫

⌘ e 0
µ

⇧ e 0
⌫

, we have

e 0
µ

⇧ A = e 0
µ

⇧ e 0
⌫

A0 ⌫ = g0
µ⌫

A0 ⌫ = A0
µ

(2.43)

In our particular LOF, g0
µ⌫

= ⌘
µ⌫

by definition, so we can say that

⌘↵µ(e 0
µ

⇧ A) = ⌘↵µA0
µ

= A0 ↵ (2.44)

So, we can evaluate the components of the vector A in any LOF if we can evaluate the dot product of A
with the LOF’s basis vectors e 0

µ

.
The clever trick is that since the dot product must have a coordinate-independent value, we can evaluate

the dot product in whatever global coordinate system (such as the Schwarzschild coordinate system) that
describes our spacetime. All that we need to is to evaluate the Schwarzschild components of both the LOF’s
basis vectors e 0

µ

and the four-vector A of interest.
Consider the following application. Suppose we have a particle that is falling from rest at infinity in

Schwarzschild spacetime, and we would like to know the particle’s ordinary velocity according to an ob-
server at rest at a given Schwarzschild coordinate r. In order to do this calculation, we must first find the
Schwarzschild coordinates of the observer’s LOF basis vectors, which we will call o

T

, o
x

, o
y

, and o
z

, corre-
sponding to the observer’s time T and spatial x, y, z coordinates, respectively. (Note that the observer’s time
coordinate T is not the Schwarzschild time coordinate t: this is why I am giving them di↵erent names. In
what follows, we will assume that AT , Ax, Ay, Az refer to the components of A evaluated in the LOF, and
At, Ar, A✓, A� to its components in the Schwarzschild system. This will avoid all the primes.)

We begin by noting that the observer’s four-velocity u
obs

is appropriately normalized for a time basis
vector (u

obs

⇧ u
obs

= �1). Also, the observer is not moving in his or her reference frame, so this vector
points purely in the observer’s time direction. Therefore, o

T

must be u
obs

. What are the Schwarzschild
components of this four-vector? These components are [ut, ur, u✓, u� ]

obs

= [dt/d⌧, dr/d⌧, d✓/d⌧, d�/d⌧ ]
obs

by definition. If the observer is at rest relative to the Schwarzschild coordinates, then we know that dr =
d✓ = d� = 0 ) ur
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= u✓

obs

= u�

obs

= 0. We can then compute ut

obs

using u
obs

⇧ u
obs

= �1:

�1 = g
µ⌫

uµ

obs

u⌫

obs

= g
tt

(ut

obs

)2 ) ut

obs

=
1p
�g

tt

=
1p

1� 2GM/r
(2.45)

We know that the Schwarzschild basis vectors are orthogonal at every point (because the Schwarzschild
metric is diagonal), so we can conveniently choose the observer’s spatial basis vectors to align with the
Schwarzchild basis vectors. Let’s choose o

z

parallel to the Schwarzschild +e
r

(that is, “upward”), o
x

parallel
to +e

�

, and o
y

to be parallel to �e
✓

(the minus sign is necessary to make the observer’s coordinate system
right-handed, as you can check with your fingers). This means that the only nonzero Schwarzschild compo-
nents of o

x

, o
y

and o
z

are their �, ✓, and r components, respectively. The only thing we then need to do is
ensure that the observer’s basis vectors normalized. For the o

z

vector, we have

1 = o
z

⇧ o
z

= g
µ⌫

(o
z

)µ(o
z

)⌫ = g
rr

(o
z

)r(o
z

)r ) (o
z

)r =
1

p
g
rr

=
p

1� 2GM/r (2.46)

and all other Schwarzschild components of the basis vectors are zero. One can find the components of the
other basis vectors similarly.
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and all other Schwarzschild components of the basis vectors are zero. One can find the components of the
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Example: an observer at rest
in Schwarzschild spacetime
A particle falling at rest from infinity:

Now, as we saw in exercise 2.6.1, a radially falling particle yields ur = dr/d⌧ = �
p

2GM/r if we assume
the particle started at rest at infinity. Then �1 = u ⇧ u requires that

�1 = g
tt

(ut)2 + g
rr

(ur)2 = �
✓
1� 2GM

r

◆
(ut)2 +

✓
1

1� 2GM/r

◆
2GM

r

) �
✓
1�

⇢
⇢⇢2GM

r

◆
= �

✓
1� 2GM

r

◆
2

(ut)2 +
⇢
⇢⇢2GM

r
) ut =

1

1� 2GM/r
(2.47)

in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
So, to summarize, the Schwarzschild coordinates of all the vectors of interest are:

[ (o
T

)t, (o
T

)r, (o
T

)✓, (o
T

)� ] =

"
1p

1� 2GM/r
, 0, 0, 0

#
(2.48a)

[ (o
z

)t, (o
T

)r, (o
T

)✓, (o
T

)� ] =
h

0,
p

1� 2GM/r, 0, 0
i

(2.48b)

[ ut, ur, u✓, u� ] =


1

1� 2GM/r
, �2GM

r
, 0, 0

�
(2.48c)

We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:

uT = ⌘Tµo
µ

⇧ u = ⌘TT o
T

⇧ u = (�1)(o
T

)↵g
↵�

u� = �(o
T

)tg
tt

ut

= +
1p

1� 2GM/r

✓
1� 2GM

r

◆
1

1� 2GM/r
=

1p
1� 2GM/r

(2.49a)

uz = ⌘zµo
µ

⇧ u = ⌘zzo
z

⇧ u = (+1)(o
z

)↵g
↵�

u� = +(o
z

)rg
rr

ur

= �
r

2GM

r

1

1� 2GM/r

p
1� 2GM/r =

�2GM/rp
1� 2GM/r

(2.49b)

Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:

v
x

=
ux

uT

= 0, v
y

=
uy

uT

= 0, v
z

=
uz

uT

=
�2GM/rp
1� 2GM/r

p
1� 2GM/r = �2GM

r
(2.50)

The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:

1. Use the observer’s four-velocity u
obs

as the the observer’s time-directed basis vector o
T

.

2. Construct a set of spatial basis vectors o
x

, o
y

, o
z

such that o
µ

⇧ o
⌫

= ⌘
µ⌫

.

3. Find the components of o
µ

in whatever global coordinate system describes spacetime on the large scale.

4. Also determine the components of the four-vector A of interest in that global coordinate system.

5. The components of the four-vector in the observer’s system are A0µ = ⌘µ⌫o
⌫

⇧ A, where one evaluates
the dot product o

µ

⇧ A = g
↵�

(o
µ

)↵A� in the global coordinate system.

One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
can more easily interpret physically.

Homework Problems

2.1 What is the metric for an r, ✓ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?
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in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
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The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)
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One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
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2.1 What is the metric for an r, ✓ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?
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in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
So, to summarize, the Schwarzschild coordinates of all the vectors of interest are:

[ (o
T

)t, (o
T

)r, (o
T

)✓, (o
T

)� ] =

"
1p

1� 2GM/r
, 0, 0, 0

#
(2.48a)

[ (o
z

)t, (o
T

)r, (o
T

)✓, (o
T

)� ] =
h

0,
p

1� 2GM/r, 0, 0
i

(2.48b)

[ ut, ur, u✓, u� ] =


1

1� 2GM/r
, �2GM

r
, 0, 0

�
(2.48c)

We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:

uT = ⌘Tµo
µ

⇧ u = ⌘TT o
T

⇧ u = (�1)(o
T

)↵g
↵�

u� = �(o
T

)tg
tt

ut

= +
1p

1� 2GM/r

✓
1� 2GM

r

◆
1

1� 2GM/r
=

1p
1� 2GM/r

(2.49a)

uz = ⌘zµo
µ

⇧ u = ⌘zzo
z

⇧ u = (+1)(o
z

)↵g
↵�

u� = +(o
z

)rg
rr

ur

= �
r

2GM

r

1

1� 2GM/r

p
1� 2GM/r =

�2GM/rp
1� 2GM/r

(2.49b)

Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:

v
x

=
ux

uT

= 0, v
y

=
uy

uT

= 0, v
z

=
uz

uT

=
�2GM/rp
1� 2GM/r

p
1� 2GM/r = �2GM

r
(2.50)

The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:
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The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)
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in this case. This gives us all of the Schwarzschild components of the particle’s four-velocity.
So, to summarize, the Schwarzschild coordinates of all the vectors of interest are:

[ (o
T

)t, (o
T

)r, (o
T

)✓, (o
T

)� ] =

"
1p

1� 2GM/r
, 0, 0, 0

#
(2.48a)

[ (o
z

)t, (o
z

)r, (o
z

)✓, (o
z

)� ] =
h

0,
p

1� 2GM/r, 0, 0
i

(2.48b)

[ ut, ur, u✓, u� ] =


1

1� 2GM/r
, �2GM

r
, 0, 0

�
(2.48c)

We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:
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The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:

1. Use the observer’s four-velocity u
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5. The components of the four-vector in the observer’s system are A0µ = ⌘µ⌫o
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the dot product o
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One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
can more easily interpret physically.
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2.1 What is the metric for an r, ✓ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?
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Example: an observer at rest
in Schwarzschild spacetime
Now we can calculate the falling particle’s speed in the LOF:
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Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:
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The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:

1. Use the observer’s four-velocity u
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as the the observer’s time-directed basis vector o
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4. Also determine the components of the four-vector A of interest in that global coordinate system.

5. The components of the four-vector in the observer’s system are A0µ = ⌘µ⌫o
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⇧ A, where one evaluates
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One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
can more easily interpret physically.

Homework Problems

2.1 What is the metric for an r, ✓ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?

2.2 We can derive equation 2.26 as follows. Calculate the partial derivative of the metric and use the
definition of the metric g
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The following equations are equivalent (I have simply renamed the 3 free lower indices cyclically:
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Add two of these equations and subtract the third and take advantage of the symmetry of the metric
and the symmetry of the Christo↵el symbol’s lower indices to simplify the result. Then multiply both
sides by 1

2

and the inverse metric, and contract over one upper index of that inverse metric to get
equation 2.26.
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radius R, where the metric is g
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We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:
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Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:
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The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:
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can more easily interpret physically.
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(2.55)

The following equations are equivalent (I have simply renamed the 3 free lower indices cyclically:
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(2.56)

Add two of these equations and subtract the third and take advantage of the symmetry of the metric
and the symmetry of the Christo↵el symbol’s lower indices to simplify the result. Then multiply both
sides by 1

2

and the inverse metric, and contract over one upper index of that inverse metric to get
equation 2.26.

2.3 Calculate the Christo↵el symbols for ✓,� coordinates on the surface of a two-dimensional sphere of
radius R, where the metric is g

✓✓

= 1, g
��

= R2 sin2 ✓, g
✓�

= g
�✓

= 0.
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Summary: general method for
calculating quantities in a LOF/LIF

We can now calculate the components of the particle’s four-velocity in the observer’s frame by calculating
the necessary dot products in the global Schwarzschild coordinate system:
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(2.53a)
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ux = ⌘xµo
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u✓ = 0 (2.53d)

Finally, we can evaluate the components of the particle’s ordinary speed in the observer’s frame as follows:

v
x

=
ux

uT

= 0, v
y

=
uy

uT

= 0, v
z

=
uz
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=
�2GM/rp
1� 2GM/r

p
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r
(2.54)

The particle’s measured speed approaches that of light as the observer’s radial coordinate r ! 2GM . (An
observer will not measure a speed larger than that of light at a position r < 2GM because an observer
cannot be at rest when r < 2GM .)

So the general approach to calculating quantities in an observer’s LOF or LIF is as follows:

1. Use the observer’s four-velocity u
obs

as the the observer’s time-directed basis vector o
T

.

2. Construct a set of spatial basis vectors o
x

, o
y

, o
z

such that o
µ

⇧ o
⌫

= ⌘
µ⌫

.

3. Find the components of o
µ

in whatever global coordinate system describes spacetime on the large scale.

4. Also determine the components of the four-vector A of interest in that global coordinate system.

5. The components of the four-vector in the observer’s system are A0µ = ⌘µ⌫o
⌫

⇧ A, where one evaluates
the dot product o

µ

⇧ A = g
↵�

(o
µ

)↵A� in the global coordinate system.

One can generalize this scheme to tensor quantities as well (see the homework). This is a very powerful
scheme for translating abstract tensor quantities expressed in arcane coordinates into quantities that one
can more easily interpret physically.

Homework Problems

2.1 What is the metric for an r, ✓ polar-coordinate system whose basis vectors point in the same directions
as those in the usual orthonormal polar coordinates, but whose magnitudes are appropriate for a
coordinate basis? What are the magnitudes of the basis vectors in this case?

2.2 We can derive equation 2.26 as follows. Calculate the partial derivative of the metric and use the
definition of the metric g

µ⌫

= e
µ

⇧ e
⌫

and equation 2.17 that defines the Christo↵el symbol:
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(2.55)

The following equations are equivalent (I have simply renamed the 3 free lower indices cyclically:
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(2.56)

Add two of these equations and subtract the third and take advantage of the symmetry of the metric
and the symmetry of the Christo↵el symbol’s lower indices to simplify the result. Then multiply both
sides by 1

2

and the inverse metric, and contract over one upper index of that inverse metric to get
equation 2.26.

2.3 Calculate the Christo↵el symbols for ✓,� coordinates on the surface of a two-dimensional sphere of
radius R, where the metric is g

✓✓

= 1, g
��

= R2 sin2 ✓, g
✓�

= g
�✓

= 0.
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